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Abstract When designingmechanical equipment, it’s important to consider the photothermal impacts in addi-
tion to mechanical ones. This is because photothermal effects can have a significant influence on equipment
performance. In this paper, a new theory of thermo-photoelasticity is presented that explains the processes
of photoelectron carriers and heat transport in homogeneous and isotropic viscoelastic semiconductor materi-
als. The proposed model combines fourth-order Moore–Gibson–Thompson (MGT) thermoelasticity with the
coupled plasma equation. We also include the viscoelastic linear Kelvin–Voigt model, which represents the
viscous nature of matter, as part of the model derivation process. We study the problem of a thermoelastic
semiconductor medium with stable elastic properties and its traction-free surface exposed to heat flux in the
form of laser pulses. To provide analytical solutions for all the variables studied, we use the normal mode
approach as the methodology. Furthermore, we estimate the effects of laser pulse rise time, viscosity, and
thermal parameters on all fields studied with the help of some comparisons displayed in different illustrations.

List of symbols

λe, μe Elastic constants
αt Coefficient of thermal expansion
α1, α2 Viscoelastic relaxation times
γ � (3λ + 2μ)αt Thermal coupling coefficient
T0 Initial temperature
θ � T − T0 Temperature increment
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T Absolute temperature
Ce Specific heat
e � div u Cubical dilatation
σi j Stress tensor
ei j Strain tensor
N Carrier density−→
H Heat flow vector
u Displacement vector−→
X Position vector−→
F External force vector

μ0 Magnetic permeability
K Thermal conductivity
ρ Material density
Q Heat source
K ∗ Ate of thermal conductivity
δi j Kronecker′s delta function
∇2 Laplacian operator
τq Phase lag of heat flow
τθ Phase lag of temperature gradient
dn Electronic deformation coefficient
Eg Semiconductor gap energy
κ Thermal activation coupling parameter
γn � (3λ + 2μ)dn τB Bulk-free carrier lifetime
ϑ ,
(
ϑ̇ � θ

)
Thermal displacement

DE Ambipolar diffusion parameter−→
J Current density

ε0 Electric permeability

1 Introduction

Renewable energy sources are driving the use of naturally occurring materials in many sectors. In solar cell
technology, for instance, semiconductor materials are essential but costly. However, recent advances have
shown that these materials can be excited by a laser or sunlight to stimulate surface electrons, making them
more economically viable [1]. Optical excitation of short elastic pulses has also become a crucial area of study
for engineers and physicists, particularly in fields such as laser engraving, photoacousticmicroscopy, and image
formation by thermal waves. While many studies have explored the effects of thermoplastic and electronic
deformations on semiconductor media, few have considered their relationship with plasma interactions and
thermoelasticity [2, 3]. The depth dependence of plasma waves generates both thermal and elastic waves,
leading to periodic changes in temperature and mechanical oscillation. Thermoelastic coupling results from
heat waves propagating elastic oscillations toward the surface in a feedback loop where the energy released
from heating a material causes an elastic wave to propagate, releasing more heat. Photogenerated carriers in
semiconductors cause periodic elastic distortions called electron distortions (ED) [4].

Theoretical analysis of transport characteristics and carrier recombination in semiconductormedia has been
explored by Todorovic [5, 6] and Song et al. [7]. Recent shifts in thermal and plasma wave propagation are due
to the linear relationship between thermal and mass transport. When laser beams hit flexible semiconductors,
high-frequency elastic waves are generated that cause internal elastic components to vibrate, resulting in wave
propagation and the release of electrons. For instance, photoexcited electrons may generate plasma waves,
whose charge intensity can be quantified. The study of plasma, thermal, and elastic model systems, as well
as the thermoelastic and electrical deformation impacts in semiconductor materials, has been the subject of
research by many scholars [8–14].

Thermoelasticity refers to how temperature changes affect the volume and shape of solids. Materials with
higher elasticity will stretch and shrinkmore easily than those with lower elasticity. Understanding thermoelas-
ticity is crucial for creatingmaterials and devices that can withstand temperature fluctuations without breaking.
The field of engineering offers ample opportunities to harness the benefits of extended thermoelasticity, from
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soil dynamics and oil extraction to mineral discovery and earthquake prediction. Despite the fact that scientists
have known the equations describing thermoelasticity for over a century, it is only recently that stress testing
materials has been utilized to determine their thermoelastic properties. By subjecting materials to varying
temperatures, engineers can estimate how much they will expand or contract. This information is vital for
building machinery or load-bearing structures with components that must fit together precisely. Engineers can
improve the thermal stability of products by understanding the fundamentals of thermoelasticity.

Feng et al. [15] developed sandwich composites inspired by nature to dampen vibrations, and conducted
a comparative study involving samples made from traditional composites and pure epoxy resin. Dynamic
mechanical examination and vibration tests revealed that sandwich composites outperformed combined com-
posites and pure epoxy in terms of damping qualities. Safaei et al. [16] explored honeycomb sandwich con-
structions with varying boundary conditions, performing free vibration, modal, and stress state studies and
identifying key influences on sandwich frequencies and stiffness due to changes in materials or parameters.
Sarkon et al. [17] discussed cutting-edge machine learning techniques with practical applications in additive
manufacturing, evaluating how various methods and designs are typically categorized. İnada et al. [18] focused
on nanomaterials and the parameters determining their effectiveness in energy storage and conversion, investi-
gating efficient materials used in solar energy conversion and storage systems. Alhijazi et al. [19] investigated
the impact of changing fiber volume fractions (Vf) on the elastic characteristics of natural fiber composites
(NFC) made from Luffa and Palm in high-density polyethylene (HDPE) and polypropylene (PP) matrices.

The system of equations governing the displacement–temperature domain is hyperbolic-parabolic, but
it contradicts experimental results because the reaction of a thermoelastic body to thermomechanical stress
propagates at an infinitely rapid rate over long distances. To address this issue, several theories have been
proposed since 1967, all of which are known as generalized thermoelasticity models. One such theory is the
extended thermoelastic theory with single-phase lag, developed by Lord and Shulman [20]. This theory led to
the development of a new law of heat transfer, which has replaced the traditional Fourier law. The extended
thermoelastic model with two relaxation times, introduced by Green and Lindsay [21], gained widespread
attention. Tzou [22] investigated the process of heat conduction from its undetectable to its observable extent
and proposed the dual-phase lag hypothesis, which is supported by both experimental and analytical evidence
[23].Greendevelopedhis thermoelasticmodels [24–26] to provide an explanation that accounts for bothflexible
and heat transfer waves connected to second sound. Many publications have examined thermoelasticity from
theoretical and empirical perspectives, often focusing on type II or III of Green-Naghdi types. Choudhuri [27]
presented the three-phase delay thermoelasticity concept based on the ideas created by Green and Naghdi [24].

Several scientific researches in recent years have discussed the Moore-Gibson-Thompson (MGT) equation
and its various interpretations. This equation is based on ubiquitous third-order differential equations used
extensively in fluid dynamics [28]. The MGT equation has found applications in many fields, including high-
intensity ultrasound lithotripsy, thermotherapy, ultrasonic cleaning, among others. Quintanilla [29, 30] has
been designing a novel thermoelasticity system for MGT thermal transmission. Additionally, Abouelregal
et al. [31–34] constructed an updated heat transport equation by adding the relaxation component to the
GN-III system and using the energy equation. This updated heat transport equation is highly recommended.

Semiconductor physics is a rapidly developing subfield in materials science and solid-state physics. The
micro- and nanostructures of semiconductor technology experience plasma, thermal, elastic, and acoustic
phenomena, which pose significant challenges to modern semiconductor physics and technologies. Updated
models of featuring pulsed lasers have shown great potential in stimulating and processing various materials,
making them valuable tools for scientific research. Apart from this, lasers are also widely used in several other
professions and industries, such as medicine and manufacturing. Laser technologies enable laser burning,
cutting, and engraving, as well as optical material spectroscopy and dynamic combustion research. Some
notable applications of these laser-based technologies include:

The aim of the present study is to introduce a system of photothermal equations that describe the behavior
of photo- and thermo-carriers in semiconductor materials when excited by strong femtosecond laser pulses.
The proposed model, referred to as 4MGT-PTE, builds upon Green and Naghdi’s third-type models [14–16]
and incorporates MGT’s idea of fourth-order time derivatives for the first time. By including the thermal
relaxation factor before the time derivatives of the third and fourth orders, this structure allows the trans-
mission of heat waves at a maximum finite speed and extends the theory of isotropic materials. To the best
of the authors’ knowledge, the fourth-order version of photo-thermoelasticity, namely 4MGT-PTE, has not
been used previously to investigate the spread of photothermal waves in semiconductor materials. This paper
discusses various types of optically stimulated plasmas, as well as plasmonic phenomena and thermoelastic
semiconductor structures.
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2 Conceptualization and basic equations

When conducting theoretical assessments of the transfer process in semiconductor materials, it is common
practice to account for coupled plasma, thermal, and elastic waves. For isotropic and homogeneous materials,
the constitutive relations and equations governing plasma, elastic, and thermal transport can be expressed as
[6, 7, 35]:

(λ + μ)∇(∇ · �u) + μ∇2�u + �F � ρ
∂2�u
∂t2

+ γθ∇θ + γn∇N (1)
(
DE∇2 − ρ

∂

∂t
− 1

τB

)
N � κθ (2)

2ei j � ui , j + u j ,i (3)

σ � λ(∇ · �u)I + μ
(∇�u + ∇(�uTr))− (γθ θ + γnN )I (4)

ρCE
∂θ

∂t
+ γθT0

∂

∂t
(∇ · �u) � −�∇ · �H + Q (5)

�H
( �X , t

)
� −K �∇θ − K ∗ �∇ϑ −

∫
Eg

τB
Nd �X (6)

where σ is the stress tensor and I is the identity tensor.
The assumption that the heat transfer waves will move at a finite rate is shown to be unrealistic when

using the conservation Eqs. (5) in combination with the modified Fourier law of the Green and Naghdi models
(GN-III), as defined by Eq. (6). Because of this, adding variables for delay or relaxation to the above equations
seems like an excellent way to fine-tune this theory.

The Taylor series approximation can be used to determine the heat flow
−→
H when the phase delay (τq ) is

considered. In this context, the heat flux
−→
H can be then expressed as:

�H
( �X , t + τq

)
≈ �H

( �X , t
)
+ τq

∂ �H
( �X , t

)

∂t
+
1

2
τ 2q

∂2 �H
( �X , t

)

∂t2
(7)

By substituting Eq. (7) into Eq. (6), one can derive the new photothermal MGT Fourier law:

�H
( �X , t

)
+ τq

∂ �H
( �X , t

)

∂t
+
1

2
τ 2q

∂2 �H
( �X , t

)

∂t2
� −

[
K �∇θ + K ∗ �∇ϑ +

∫
Eg

τB
Nd �X

]
(8)

Differentiating the previous equation with respect to the position vector
−→
X will result in:

�H
( �X , t

)
+ τq

∂ �H
( �X , t

)

∂t
+
1

2
τ 2q

∂2 �H
( �X , t

)

∂t2
� −

((
K

∂

∂t
+ K ∗

)
�∇θ +

Eg

τB

∂N

∂t

)
(9)

We derive the modified fourth-order MGT photothermal heat transfer equation by inserting Eq. (9) into
the energy Eq. (5) as follows:

(
1 + τq

∂
∂t +

1
2τ

2
q

∂2

∂t2

)
∂
∂t

[
ρCE

∂θ
∂t + γθT0

∂
∂t

( �∇ · �u
)

− Q
]

� ∇.
(
K ∇ θ̇

)
+ ∇.(K ∗∇θ) +

Eg
τB

∂N
∂t

(10)

The interaction between thermal-plasma-elastic waves is explained by this equation. However, it has been
observed that internal friction plays a significant role in attenuation and scattering of these waves. Therefore,
understanding the viscoelastic behavior of materials is crucial for accurately modeling wave propagation
processes. Several theoretical frameworks have been developed to account for energy dissipation in vibrating
solids due to viscoelasticity. Knowledge about viscoelastic behavior is particularly relevant in the field of
engineering materials, where certain materials exhibit viscoelastic interaction with stress [36]. This area of
research has important implications in fields such as materials science, mineralogy, and solid-state physics.



ulsed excitation heating of semiconductor material 4981

To this end, the Kelvin–Voigt concept of linear viscoelasticity is utilized to characterize the viscoelastic
features of isotropic materials. When the influence of viscosity is considered, the values for the coefficients λ,
μ, γθ , and γn are as follows [37]:

λ �λe + α1λe
∂

∂t
, μ � μe + α2μe

∂

∂t
,

γθ �γ1e + α3γ1e
∂

∂t
, γn � γ2e + α4γ2e

∂

∂t
, (11)

where

γ1e �(3λe + 2μe)αt , α3 � (3λeα1 + 2μeα2)αt/γ1e

γ2e �(3λe + 2μe)dn , α4 � (3λeα1 + 2μeα2)dn/γ2e (12)

3 Electromagnetic Maxwell’s equations

Maxwell’s equations helped us understand that light is actually made up of an electromagnetic field. This field
follows the wave equation and travels at the speed of light through empty space. In a vacuum, electromagnetic
waves are transverse because the electric and magnetic fields are always perpendicular to the direction of
the wave’s movement. If there’s no electric or magnetic field present, then no electromagnetic waves will
be sent out. When any physical process involves both temperature and electromagnetic fields together, it is
called “thermo-electromagnetism”. Because an oscillating electric field

−→
H creates an oscillating magnetic

field
−→
h , which in turn produces an oscillating electric field

−→
E , Maxwell’s equations predicted that electricity

and magnetism would act like electromagnetic waves. The equations of Maxwell may be rewritten using the
differential form as follows [38, 39]:

�J + ε0
∂ �E
∂t

�∇ × �h, × �E +
∂ �B
∂t

� 0, �E +

(
∂ �u
∂t

× �B
)

� 0,

�B �μ0

( �H + �h
)
, ∇ · �h � 0. (13)

There is a relationship between electromagnetic forces and mechanical momentum, and theMaxwell stress
tensor represents this correlation. The stress tensor Mi j of the electromagnetic field, known as the Maxwell
stress tensor, can be expressed by the following formula:

Mi j � μ0
[
Hih j + Hjhi − Hkhkδi j

]
(14)

In an electric field �E and a magnetic field �H, a charged particle qe traveling at speed ∂�u
∂t experiences the

Lorentz force �F. The Lorentz force �F exerted on the charged particle is then given by:

�F � μ0

(
∇ × �H

)
(15)

4 Statement of the problem

This investigation considers a two-dimensional photo-elastic thermoelastic medium (half-space) in which the
free surface penetrates the solid along the x-axis. At time t � 0, the surface layer (x � 0) is supposed to be
heated by a thermal flux in the form of a fast laser pulse. It will be taken into account that the force perpendicular
to the body’s surface (x � 0) depends on the time t and the Cartesian coordinates x and z. This is because the
laser pulses cause heating in a direction perpendicular to the oxz plane. When x reaches infinity, all physical
fields will diminish to the point of vanishing away from the surface; thus, the conditions for uniformity will
be considered.

The following expression can represent the displacement component in x and z directions:

�u ≡ (u(x , z, t), 0, w(x , z, t)) (16)
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This equation enables us to determine the dilatation (e) as:

e(x , z, t) � div(�u) � ∂u

∂x
+

∂w

∂z
(17)

After exposing the surface to an initial magnetic field �H0 � (0, H0, 0), the Lorentz force �F is given by:

Fx �
(

μ0H
2
0

∂e

∂x
− ε0μ

2
0H

2
0

∂2u

∂t2

)
, Fy � 0, Fz �

(
μ0H

2
0

∂e

∂z
− ε0μ

2
0H

2
0

∂2w

∂t2

)
(18)

In Eq. (1), for x and z axes, the following formulas are used when the Lorentz force is taken into consid-
eration:

(
λ + μ + μ0H

2
0

) ∂e
∂x

+

(
μ∇2 − (ρ + ε0μ

2
0H

2
0

) ∂2

∂t2

)
u � ∂

∂x
(γθ θ + γnN ) (19)

(
λ + μ + μ0H

2
0

)∂e
∂z

+

(
μ∇2 − (ρ + ε0μ

2
0H

2
0

) ∂2

∂t2

)
w � ∂

∂z
(γθ θ + γnN ) (20)

By utilizing Eq. (17) and eliminating u andw fromEqs. (19) and (20), we can derive the following equation:
[(

λe + 2μe

ρ
+

λeα1 + 2μeα2

ρ

∂

∂t
+

μ0H2
0

ρ

)

∇2 − (1 + ε0μ
2
0H

2
0

) ∂2

∂t2

]

e � 1

ρ
∇2(γθ θ + γnN ) (21)

It is possible to write the coupled plasma wave Eq. (2) as follows:
[
DE

(
∂2

∂x2
+

∂2

∂z2

)
− ρ

∂

∂t
− 1

τB

]
N � κθ (22)

In addition, the proposed fourth-order MGT photothermal model may be reformulated when there is no
heat source, as follows:

(
1 + τq

∂

∂t
+
1

2
τ 2q

∂2

∂t2

)
∂2

∂t2
(ρCEθ + γ T0e) �

(
K ∗ + K

∂

∂t

)(
∂2

∂x2
+

∂2

∂z2

)
θ +
(
Eg/τB

)∂N
∂t

(23)

The four constitutive equations may be written in x, y, and z directions as follows:

σxx �
(

λe + α1λe
∂

∂t

)
∂w

∂z
+ (λe + 2μe)

(
1 +

λeα1 + 2μeα2

λe + 2μe

∂

∂t

)
∂u

∂x
− (γθ θ + γnN )

σzz �
(

λe + α1λe
∂

∂t

)
∂u

∂x
+ (λe + 2μe)

(
1 +

λeα1 + 2μeα2

λe + 2μe

∂

∂t

)
∂w

∂z
− (γθ θ + γnN )

σxz �
(

μe + α2μe
∂

∂t

)(
∂u

∂z
+

∂w

∂x

)
(24)

It is common to include the non-dimensional variables expressed by:
{
x ′, z′

} � η0{x ,z}
c0

,
{
u′,w′} � η0{u,w}

c0
,
{
θ ′, N ′} � 1

ρc20
{γ1eθ , γ2eN },

t ′ � η0t , τq � η0τq , σ ′
i j � σi j/(γ1eT0), η0 � ρCEc20/K , c20 � c21 + a20 ,

(25)

where c21 � (λe + 2μe)/ρ, c22 � μe/ρ, and a20 � μ0H2
0 /ρ.

After introducing the dimensionless expressions specified by Eq. (25), the finalized Eqs. (21)-(23) have
the following forms by removing the prime symbols:

[(

1 +
λeα1 + 2μeα2

ρc21

∂

∂t
+ a20

)

∇2 − g0
∂2

∂t2

]

e � ∇2
[(

1 + α3
∂

∂t

)
θ +

(
1 + α4

∂

∂t

)
N

]
(26)

(
1 + τq

∂

∂t
+
1

2
τ 2q

∂2

∂t2

)
∂2

∂t2

(
θ + ε1

(
1 + α3

∂

∂t

)
e

)

�
(
K

∗
+

∂

∂t

)(
∂2θ

∂x2
+

∂2θ

∂z2

)
+ ε2

∂N

∂t
(27)
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[(
1 + α4

∂
∂t

)(
∂2

∂x2
+ ∂2

∂z2

)
− g1

(
1 + α4

∂
∂t

)
∂
∂t − g2

(
1 + α4

∂
∂t

)]
N� g3

(
1 + α3

∂
∂t

)
θ (28)

where

ε1 � (γ1e)
2T0/

(
ρ2CEc20

)
, ε2 � γ1eEgη0/(τBρCEγ2e), K

∗ � K ∗/
(
c20Kρ

)
,

g0 � 1 + μ0ε0a20 , g1 � ρc20/(η0DE ), g2 � c20/(τBDE ), g3 � κc20γ2e
η20DE

(29)

Thereby, Eq. (24) take the following forms when the non-dimensional quantities are applied:

σxx �
(
C11 + C14

∂

∂t

)
∂u

∂x
+ C12

(
1 + α1

∂

∂t

)
∂w

∂z
−
(
1 + α3

∂

∂t

)
θ −

(
1 + α4

∂

∂t

)
N

σzz �
(
C11 + C14

∂

∂t

)
∂w

∂z
+ C12

(
1 + α1

∂

∂t

)
∂u

∂x
−
(
1 + α3

∂

∂t

)
θ −

(
1 + α4

∂

∂t

)
N

σxz �C13

(
1 + α2

∂

∂t

)(
∂u

∂z
+

∂w

∂x

)
(30)

where

C11 � λe + 2μe

c21 + a20
,C12 � λe

c21 + a20
,C13 � μe

c21 + a20
,C14 � λeα1 + 2μeα2

c21 + a20
. (31)

5 Normal mode technique

To deal with the governing partial differential equations derived in this study, different numerical and semi-
analytical methods introduced in the literature can be employed [40–47]. In this section, the following expres-
sions are utilized in order to calculate the solutions in the context of normal modes:

{
u, w, θ , e, N , σi j

}
(x , z, t) �

{
u∗, w∗, θ∗, e∗, N∗, σ ∗

i j

}
(x)Exp(iaz + ωt) (32)

where the variables u∗(x), w∗(x), θ∗(x), e∗(x), N∗(x), and σ ∗
i j (x) denote the magnitudes of the photo-

thermophysical variables. In addition, i � √−1, and the symbol a represents the wavenumber in z direc-
tion, and ω represents the frequency. The results of applying the normal mode method on the governing
Eqs. (26)–(30) are as follows:

(
d2

dx2
− ζ1

)
e∗ �

(
d2

dx2
− a2

)[
δ0θ

∗ + δ1N
∗] (33)

(
d2

dx2
− ζ3

)
N∗ � δ3θ

∗ (34)

δ4e
∗ − δ5N

∗ �
(

d2

dx2
− ζ2

)
θ∗ (35)

σ ∗
xx � �1

du∗
dx + ia�2w

∗ − �4θ
∗ − �5N∗

σ ∗
zz � ia�1w

∗ + �2
du∗
dx − �4θ

∗ − �5N∗

σ ∗
xz � �3

(
iau∗ + dw∗

dx

) (36)

where

ζ1 � a2 +
ρc21g0ω

2

ρc21 + ω
(
λeα1 + 2μeα2 + +μ0H2

0

) , q �
ω2
(
1 + τqω + 1

2τ
2
qω2

)

K
∗
+ ω

,

ζ2 � a2 + q , δ1 � ρc21(1 + α3ω)

ρc21 + ω(λeα1 + 2μeα2)
, δ2 � ρc21(1 + α4ω)

ρc21 + ω(λeα1 + 2μeα2)
, δ3 � g3(1 + α3ω)

1 + α4ω

ζ3 � a2 + g1ω + g2, δ4 � qε1(1 + α3ω), δ5 � ωε2(1 + α4ω), �1 � C11 + C14ω,
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�2 �C12(1 + α1ω), �3 � C13(1 + α2ω), �4 � (1 + α3ω), �5 � (1 + α3ω). (37)

By considering Eqs. (33)–(36), one can deduce the following expression for e∗:
(

d6

dx6
− A

d4

dx4
+ B

d2

dx2
− C

)
e∗ � 0, (38)

with

D � du
dx , A � ζ3 + g5, B � ζ3g5 + g6 − δ3g7, C � ζ3g6 + δ3g8,

g5 � ζ1 + ζ2 + δ0δ4, g6 � ζ1ζ2 + δ0δ4a2, g7 � δ1δ4 − δ5, g8 � ζ1δ5 − a2.
(39)

It is possible to factor Eq. (38) by using:
(

d2

dx2
− k21

)(
d2

dx2
− k22

)(
d2

dx2
− k23

)
e∗ � 0, (40)

Following is a polynomial function that may be solved to obtain the variables k2n , n � 1, 2, 3, respectively:

k6 − Ak4 + Bk2 − C � 0. (41)

The analysis disregards the physical issue of positive exponent to satisfy the uniformity criterion. This
will ensure us that the solution of the problem does not diverge as they approach to infinity. The solution of
Eq. (40), which considers a restriction when x → ∞, may be introduced as:

e∗(x) �
3∑

n�1

Cne
−knx . (42)

The same approach may be used to obtain the following solutions as well:

{
N∗, θ∗}(x) �

3∑

n�1

{
C ′
n ,C

′′
n

}
e−knx , (43)

where the parameters C ′
n and C

′′
n are independent. Inserting Eqs. (42) and (43) into Eqs. (34) and (35) leads to:

C ′
n(a,ω) � HnCn ,C

′′
n (a,ω) � LnCn(a,ω), (44)

where

Hn � δ3δ4(
k2n − ζ2

)(
k2n − ζ3

)
+ δ3δ5

, Ln �
(
k2n − ζ3

)
Hn

δ3
. (45)

After introducing the non-dimensional parameters defined in (32), we obtain the following from Eqs. (42)
and (43):

(
d2

dx2
− k24

)
u∗ �

3∑

n�1

CnMne
−knx (46)

where

Mn � kn
((

ρc21 + (λeα1 + μeα2)ω + ρc21a
2
0

)− ρc21(1 + α3ω)Ln − ρc21(1 + α4ω)Hn
)

c22(1 + α3ω)

k24 � a2 +
ρc21ω

2g0
c22(1 + α3ω)

, (47)

It is possible to achieve the following result in light of the regularity criterion:

u∗ �
3∑

n�1

{
Mn

k2n − k24
Cn

}

e−knx + C4e
−k4x (48)
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Thereby, the solution form of w∗ can be written by:

w∗ � 1
ia

3∑

n�1

(
knMn
k2n−k24

+ 1

)
Cne−knx + C4k4

ia e−k4x (49)

As a result of inserting the obtained solutions (u∗, w∗, N∗ and θ∗) into Eq. (36), one can calculate the
thermal stresses as:

σ ∗
xx �

3∑

n�1
CnRne−knx + R4C4e−k4x

σ ∗
zz �

3∑

n�1
CnQne−knx + Q4C4e−k4x

σ ∗
xz �

3∑

n�1
Cn Pne−knx + C4P4e−k4x

(50)

where

Rn � knC12Mn

k2n − k24
+
knC11Mn

−k2n + k24
− (Hn + Ln) + 1, R4 � k4C12 − k4C11,

Qn � knC11Mn

k2n − k24
+
knC12Mn

−k2n + k24
− (Hn + Ln) + 1, Q4 � k4C11 − k4C12,

Pn � − C13Mn
(
a2 + k2n

)

ia
(
k2n − k24

) +
k2nC13

ia
, P4 � −a2C13

ia
− k24C13

ia
. (51)

6 Applications

The unknown parameters C j , where j � 1, 2, 3, and 4, will be set in this section. It must be considered that
the initial conditions of the suggested problem require that the medium is initially at rest where there is no
deformation or stress. It will be taken into account that there is a force P depends on both time and spatial
coordinates z acting on the medium at the surface x � 0. On the surface x � 0, the following mechanical
boundary conditions apply:

σzz(x , z, t) � −P , σxz(x , z, t) � 0 at x � 0. (52)

Various physical phenomena may occur when a laser beam is applied to an elastic surface, some of which
are sensitive to the incident power. Since high incident forces damage the material’s surface, this method
is unsuitable for non-destructive testing and will only be addressed at low incident level. The laser source
generates heat; thermal waves are created due to heat transfer, and elastic waves are produced at low incidence
powers. Materials like semiconductors have the potential to conduct electricity when the right conditions are
precisely met. It is considered that the plane surrounding the thermoelastic medium (x � 0) is subject to
thermal shocks in the form of laser pulses. Therefore, in this scenario, the following thermal conditions can
be taken into account [48]:

θ(x , z, t) �
16Ê γ̂

(
1 − R̂

)

RGv4
√
2π

e−2z2/RG t3e−2t2/v2 (53)

For the purpose of laser heating of metals, it is helpful to assume a surface source, as demonstrated in
Eq. (52), in which Ê is the energy of the laser pulse per unit length, R̂ is the surface reflectivity, RG is the
radius of the Gaussian beam, v is the rise time of the laser pulse, and γ̂ is the extinction coefficient. During
one stage, a laser can produce the maximum amount of light energy Ê . Due to the fact that the light energy is
defined by a Gaussian in z direction, Eq. (53) represents an illumination strip.

The impact of surface recombination on device characteristics is widely recognized. Devices with a high
ratio of surface area to volume can be particularly affected, with surface recombination dominating their fea-
tures. As time progresses, carriers diffuse toward the sample’s surface and have a predetermined probability
of undergoing recombination. Whether the process is carried out optically or thermally, recombination and
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generation are constant processes that occur in semiconductors. Thermodynamically speaking, when a sub-
stance reaches thermal equilibrium, its generation and recombination rates will reach an equilibrium state.
This ensures that the total charge carrier density remains constant. Hence, the following expression can be
utilized to describe the carrier density boundary condition:

DE
∂N

∂x

∣
∣∣
∣
x�0

� sfN (0, z, t), (54)

where sf is the rate of recombination close to the surface, it is common practice to discuss the surface recom-
bination velocities when discussing carrier distributions close to a surface.

By inserting the solutions of the relevant variables into the boundary conditions mentioned above, one gets
the following equations for the parameters C j , where j � 1, 2, 3, 4:

⎧
⎪⎨

⎪⎩

C1
C2
C3
C4

⎫
⎪⎬

⎪⎭
�
⎡

⎢
⎣

R1 R2 R3 R4
P1 P2 P3 P4
G1 G2 G3 0
L1 L2 L3 0

⎤

⎥
⎦

−1⎧
⎪⎨

⎪⎩

−P0
0
0
P1

⎫
⎪⎬

⎪⎭
. (55)

where Gn � Hn
(
DEkn + s f

)

After utilizing the inversematrixmethod, it is possible to acquire the values of the four unknown coefficients
C j , where j � 1, 2, 3, and 4. Consequently, the solutions are obtained for the thermal deformations, the
temperature change, and other photo-thermo-mechanical variables associated with the half-space.

7 Numerical results and discussions

The objective of this section is to showcase the latest developments in the study of cutting-edge semiconductor
materials, structures, and devices, alongside advancements in characterization methods that leverage plasma,
thermal, elastic, and acoustic influences. These include techniques like carrierography, thermography, pho-
tothermal deflection, photothermal radiometry, etc. Additionally, a case study will be presented to highlight
the numerical outcomes presented in previous sections. The effect of modifying parameters on mathematical
solutions for physical quantities will also be explored. To facilitate the numerical computations, the charac-
teristics of silicon (Si) will serve as a representative for semiconductor polymer materials. By considering
T0 � 298K, the physical values for the introduced parameters are as follows [7]:

{λe, μe} � {2.696, 1.639} × 1010 kg
ms2 , ρ � 1740 kgm3 , ω � 2 rads−1,

K � 2.510 W
mK, CE � 1.04 × 103 JkgK , dn � − 9

1031
m3,

Eg � 1.5077 eV, DE � 2.5
103

× m2

s , sf � 2ms , τ � 5 × 10−5 s.

The values of magnetic constants are considered as:

H0 � 107

4π

A

m
, ε0 � 1

36π × 109
F

m
, μ0 � 4π

107
H

m
.

Moreover, the following values are taken into consideration [40]:

RG � 0.45 mm, v � 10 ns, R̂ � 91%, γ̂ � 0.001 m−1, Ê � 10J

At t � 0.12 s, mathematical computations will be conducted through the use of Mathematica software.
The characteristics and arrangements of all non-dimensional photothermal domains within semiconducting
materials like silicon can be delineated by the aforementioned physical parameters. Furthermore, depictions
of different domain variables’ real-part plots will be exhibited within the median at surface z � 0.2. To explore
the behavior of heated material, the patterns of thermal stress (Re(σzz) � σ̂zz and Re(σxz) � σ̂xz), within a
very short time, the variation of temperature Re(θ) � θ̂ , the carrier density Re(N ) � N̂ , vertical displacement
Re(u) � û, and changes in transverse (transverse) displacement Re(w) � ŵ are illustrated as a function of
material’s depth.
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7.1 Effect of varying the rise time of the laser pulse

Knowing the location and magnitude of tension line-focused laser irradiation can prove to be valuable in
certain situations. Examining the correlation between the field generated by the laser and surface-breaking
fissures could be an intriguing avenue for exploration. The concept of the “scattered field,” which comprises
tractions on the surfaces of cracks, adds to the tractions induced by the “incident field” on the same surfaces,
and ensures that the criterion for “traction-free crack surfaces” is satisfied, proving to be a useful tool in this
case.

The duration of picosecond laser pulses’ rise time is directly linked to the energy held within the pulse and
the spot diameter. Moreover, it is confined to the silicon surface, which holds the greatest concentration of laser
energy. In the subsequent subsection, we will delve into the thermal stress fields and deformations generated
in a silicon half-space by line-focused laser light. Theoretical conclusions were drawn using the thermoelastic
concept, which explores the movement of heat. The ongoing research analyzes laser-induced ultrasound with
the aid of the generalized thermodynamic theory of elasticity.

Figures 1, 2, 3, 4, 5 and 6 demonstrate the impact of altering the laser pulse rise-time coefficient v (v �
1.0, 1.1, and 1.2) on the system fields as a function of position x. The figures depict that all of the system
fields satisfy the boundary conditions, with all curves converging as x approaches infinity. Notably, we observe
that the rise-time factor v of the laser pulse has a significant effect on the studied fields for x values ranging
from 0 to 10. In laser ultrasound, the correlation between heat and wave equations is driven by the concept
of thermal expansion, resulting in a partially associated problem. In contrast, the extended thermoelasticity
model accounts for temperature interaction of stress pulses as they propagate through the material, rendering
the problem fully coupled. As a result, both thermal and elastic waves can be observed.

Figure 2 showcases how alterations in the laser pulse’s rise-time coefficient v affect the temperature field
θ̂ at various distances x. As depicted, the temperature gradient initially reaches its maximum positive value
at the boundary where the laser pulse is applied and gradually decreases to zero. The smallest temperature
value is observed at x � 7. Furthermore, it has been observed that changes in the laser pulse rise-time v have
a significant impact on the temperature fluctuation θ̂ , as the rise-time factor is directly proportional to both
the time of the laser pulse and the temperature range. Thus, an increase in the laser pulse rise-time v results
in a wider temperature range θ̂ , as demonstrated by the figure. It is worth noting that precise measurement of
the temperature field is crucial for accurate prediction of laser-induced ultrasound since the temperature acts
as the driving force of the ultrasound. The current computational model effectively simulates the rapid energy
deposition of a single laser pulse in a transient thermoelastic volume.

Figure 3 illustrates the changes in the real part of the carrier density N̂ as a function of distance x and the
laser pulse rise-time coefficient v. As shown, N̂ starts with positive values in all scenarios and steadily increases
until it reaches its maximum potential before decreasing to zero. Based on recombination process calculations,

Fig. 1 Schematic configuration of a photothermal solid half-space
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Fig. 2 The influence of rise-time coefficient v on temperature θ̂

Fig. 3 The influence of rise-time coefficient v on carrier charge density N̂

plasma wave propagation begins with positive values that are expected to exist at the surface in all three v
scenarios. The photo-excitation transfer operation then drives the plasma waves to become stronger, with the
waves reaching their peak intensity near the surface. Notably, Fig. 3 clearly demonstrates the significant impact
of the laser pulse rise-time coefficient v on the variations in carrier density N̂ . The observed patterns serve
as evidence of this effect. Specifically, when applying the improved 4MGT-PTVE photo-thermo-viscoelastic
model, a decrease in the variation of N̂ was observed as the pulse rise-time factor v increased. This finding
held true across all tested scenarios.

In Fig. 4, one can observe that the displacement û exhibits a significant surface response, which gradually
diminishes as depth x within the medium and time t increase. The behavior of the horizontal displacement
component û appears to be affected by the duration of the rising edge of the laser pulse v, as deduced from the
illustrated results. Moving onto Fig. 5, we notice that the displacement ŵ varies with both depth x and time.
Notably, the magnitude of the displacement ŵ is lower for values of v equal to 1.1 and 1.2 compared to 1.0.
This phenomenon can be attributed to the prominent influence of the laser pulse time factor on the deformation.

As the distance from the laser line-axis source increases, the waveforms exhibit a wide range of shapes and
amplitudes. The most prominent alterations in displacement can be observed on the irradiated surface. At the
same time, the waveform is predominantly influenced by thermal events taking place directly under the source
within the heated zone. Several studies [49–51] have investigated the vertical surface displacements obtained
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Fig. 4 The influence of rise-time coefficient v on displacement û

Fig. 5 The influence of rise-time coefficient v on displacement ŵ

Fig. 6 The influence of rise-time coefficient v on stress σ̂zz
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Fig. 7 Influence of rise-time coefficient v on stress σ̂xz

experimentally from a point laser source within the heated zone. Remarkably, the results generally align with
the predicted pattern suggested by theoretical models in the literature.

Figures 6 and 7 illustrate the differences in thermal stress characteristics σ̂zz and σ̂xz based on the distance
x. The sensitivity for each of the three possible pulse rise-time factor v choices is almost identical, indicating
their comparable effectiveness. The figures demonstrate a noticeable increase in the transient thermal stresses,
σ̂zz and σ̂xz , as the laser pulse’s rise time increases. Additionally, it is worth noting that the curves for thermal
stress σ̂xz always originate from zero, which satisfies the mechanical boundary conditions and validates the
numerical results’ accuracy. In all three cases, the stress σ̂zz initially rises dramatically before stabilizing,
owing to the initial thermal stress applied along the z-axis. Furthermore, increasing the laser pulse’s rise-time
factor v leads to a significant shift in the magnitude and behavior of thermal stresses, as depicted in the figures.

For certain applications, it can be beneficial to have knowledge of the stress that is generated by irradiation
using a laser that is concentrated along a particular line. Prior to calculating the dispersed field, one must first
ascertain the stresses caused by the incident field. This necessitates measuring the stress field accurately in all
directions, from a distance to close proximity to the source. When utilizing the scanning laser source method,
whereby the laser source is moved across the test material, these measurements are particularly important.
These findings are in line with those documented in relevant research literature, specifically sources [38, 39].
Although the results presented pertain to semiconductors, they suggest that the thickness of the semiconductor
relative to the size of the irradiated region will play a crucial role in determining whether this simplified model
may be used to forecast shifts at the epicenter during the generation of a laser within a semiconductor. The
photo-thermoelastic model represents an excellent tool to obtain a highly precise estimate of the displacement
of semiconductors at their edges.

The process of generating free electrons entails the swift movement of valence band electrons into the con-
duction band, resulting in the absorption of photons, as established by previous research [52]. This phenomenon
is achieved using a nanosecond laser with an extremely high-power density. By utilizing a more powerful laser
with a shorter pulse duration, we were able to increase the maximum number of liberated electrons [53]. It is
worth noting that the depth to which the laser may penetrate the silicon is limited due to its high absorption
rate. To achieve optimal results when treating silicone with a nanosecond laser, the pulse width should be
kept to a minimum. This is due to the fact that a reduced pulse width leads to a higher lattice temperature
at the surface. As such, this numerical study provides essential theoretical considerations for selecting the
appropriate nanosecond laser.

7.2 The influence of mechanical relaxation times

The majority of materials exhibit some degree of viscoelastic behavior, whereby they may be deformed in
various ways depending on their temperature. In the case of polymers, stress relaxation over time t may be
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Fig. 8 The impact of viscosity on temperature θ̂

described using their relaxation modulus (α1 and α2), which is a fundamental viscoelastic property of the
material. To accurately analyze and design materials, it is crucial to realistically simulate tension relaxation
and viscoelastic deformation across numerous subjects. The thermal transformations of viscoelastic materials
may be characterized using free volume change or relaxation time. It is worth noting that while this research
focuses primarily on the solid-state glass transition, it is important to acknowledge that the thermal transfer
behaviors exhibited by different materials may vary depending on their specific properties.

Polymer scientists have introduced numerous physical hypotheses and models to describe the viscous
behavior of materials, as well as their mechanical relaxation factors. In many of these simulations, linear
viscosity was the principal focus, which is also the case in the present study. Among the most frequently
utilized viscoelastic models for simulating a vibration isolator is the Voigt or Kelvin–Voigt model. The spring
and damper elements in this model are arranged perpendicularly, with their properties combined to elucidate
the elastic and viscous behaviors of the isolate. The modified Kelvin–Voigt method takes into account the
viscoelastic behavior of polymers and illustrates how displacement over time corresponds to total strain.

Regarding the research and discussion presented in this work, both the general photothermal elasticity
equations and theKelvinmodel (MGT-PTVE)were taken into consideration. Specifically, we aim to investigate
the effects of viscoelastic relaxation times, α1 and α2, by comparing scenarios with and without their presence
(α1 � 0.06 and α2 � 0.09 vs. α1 � α2 � 0). Figures 8, 9, 10, 1111 and 12 provide numerical results comparing
the viscosity effects of the two photothermal theory scenarios on the field variables studied (MGT-PTVE
and MGT-PTE). When accounting for viscosity effects, we utilize the photo-thermo-viscoelasticity model
(MGT-PTVE), whereas the photo-thermoelasticity model (MGT-PTE) is employed in its absence, assuming
that all other settings remain constant. The response of photothermal visco-thermoelastic polymers to changes
in displacement and temperature has not been previously examined.

Figure 8 depicts temperature distributions as a function of depth for two photothermal concepts, namely
MGT-PTVEandMGT-PTE.The graph clearly illustrates that theMGT-PTE theory predicts significantly higher
temperatures than the MGT-PTVE model. This suggests that incorporating viscoelastic relaxation durations
α1 and α2 impedes the propagation of heat waves, in line with physical processes. It is worth noting that
the rate of temperature diffusion is also constrained by the proposed model, consistent with the physical
behavior of viscoelastic materials. The literature [54, 55] highlights the substantial temperature dependence of
material properties which must be considered when investigating this type of material. Specifically, changes in
temperature can alter the stiffness of a material, thereby influencing the amount of energy it dissipates during
deformation.

Figure 9 demonstrates that the displacement ŵ exhibits a significant variation with changes in viscosity
factors (α1 and α2) across a wide range of distances x. Specifically, we observe a decrease in displacement
values as the viscosity is altered, with displacement curves declining at a faster rate. One may wonder why
viscous or non-recoverable deformations appear to occupy a smaller volume than recoverable deformations.
The answer lies in the fact that recoverable deformations undergo recovery,while non-recoverable deformations
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Fig. 9 The impact of viscosity on displacement ŵ

Fig. 10 The impact of viscosity on photothermal stress σ̂xz

require much longer to complete than the same reversible deformation. This could be one explanation for this
phenomenon.

Figure 10 showcases the correlation between photothermal stress σ̂xz and the distance x, with varying
levels of the viscosity factor. The curves indicates that viscoelastic relaxation times play a significant role in
affecting thermal stress σ̂xz , while higher viscosity levels result in faster decreases in thermal stress. Moving
onto Fig. 11, we observe fluctuations in carrier charge density N̂ versus x for the two photothermal hypotheses
(MGT-PTVE and MGT-PTE). It is worth mentioning that the propagation speeds of these fields are limited,
aligning with the brainwave patterns of viscoelastic materials, and suggesting that the amplitudes proposed
by the photothermal visco-thermoelastic (MGT-PTVE) concept exceed those suggested by the photothermal
thermoelastic (MGT-PTE) theory.

The findings of this case study hold implications across a wide range of scientific and technological fields,
including atomic physics, industrial engineering, thermal energy plants, underwater constructions, compressed
gases, aircraft design, chemical pipelines, and advancedmaterials. The currentmodel demonstrates satisfactory
emulation of both creep and harmonic behaviors under static and dynamic loadings. This model thus holds
promising potential to replace the requirement for numerical and experimental simulations of viscoelastic
processes in materials, leading to improvements in precision and simplicity. Notably, the simulated results
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Fig. 11 The impact of viscosity on carrier charge density N̂

presented in this work were achieved through refined techniques as outlined in references [56, 57] and are
highly accurate, thanks to careful experimental procedures.

8 Concluding remarks

This study focused on the photothermal interaction of a homogeneous, isotropic, semiconducting, and vis-
coelastic material within the framework of Moore–Gibson–Thompson (MGT) concepts of generalized photo-
thermoelasticity. The Voigt and Kelvin model was incorporated to better understand viscoelastic materials and
their viscosity, which depends on the speed at which they can relax and stress. To heat the semiconductor
material, a laser pulse was utilized. Numerical simulations were conducted to explore how various physical
parameters of the system affect the photophysical fields of a semiconductor in a thermo-viscous elasticmedium.

Based on the findings of the present study, one can conclude the following results:

1. The semiconductor thermo-photophysical fields exhibit nonzero values only within a constrained area
and consistently decrease without any thermal disruption outside this region. This outcome confirms that
thermal and mechanical wavefronts in the model propagate at a limited rate with time.

2. The rise time of the laser pulse is a crucial component affecting the operation of all studied fields, as silicon’s
excellent energy absorption capability causes the beam’s power to decrease as it penetrates deeper into the
semiconductor material

3. Thermal stresses can result in surface and internal cracks inmaterials, complicating their ability towithstand
high-temperature environments

4. Viscoelastic relaxation times slow down the transmission rate of thermomechanical waves, as per the
proposed thermal conductivity equation. It is important to note that the speed of temperature diffusion is
limited in viscoelastic materials, consistent with physical phenomena

5. By offering improvements in precision and simplicity, the proposed model has the potential to replace the
need for numerical and experimental simulations of viscoelastic processes in materials

6. The study’s results showcase the effectiveness of the proposed modeling and analysis methods for ther-
momechanical vibration in viscous Kelvin–Voigt semiconductor material

7. According to the findings of the research, thermodynamic and electronic deformation processes can sig-
nificantly alter photothermal and acoustic signals, especially in proximity to the laser source impinging on
the sample.
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