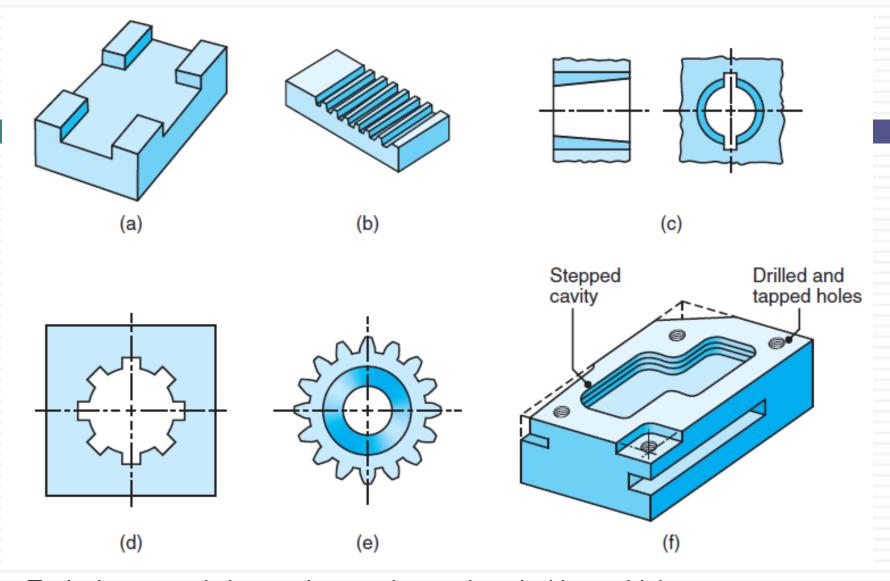
Introduction to Manufacturing, AGE-1320 Ahmed M. El-Sherbeeny, PhD Fall-2025

Manufacturing Engineering Technology in SI Units, 6th Edition

Chapter 24: Machining Processes: Milling (Milling, Broaching, Sawing, Filing and Gear Manufacturing)

Chapter Outline

- 1. Introduction
- 2. Peripheral milling
- Face milling
- 4. End milling
- 5. Other milling operations
- 6. Milling machines

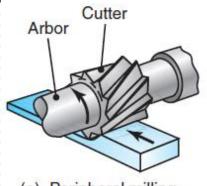

1. Introduction

Introduction

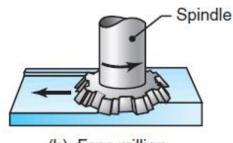
- Last chapter: processes that produce round shapes
- Milling:
 - One of most common, versatile, economical machining processes
 - Rotating cutter removes material, traveling along various axes w.r.t. workpiece:
 - Milling cutter multitooth tool: produces num. of chips / 1 rev
 - Takes place in a variety of configurations
 - Produces parts w/ complex external and internal features
- Similar processes (<u>not discussed here</u>):
 - Planing, shaping, broaching, sawing, filing, gear manufacturing
 - Either tool or workpiece travel along straight path
 - Produce flat or various shaped surfaces

Typical parts and shapes that can be produced with machining processes described in this chapter. Can you guess how a) – f) are produced?

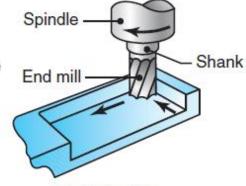
Introduction

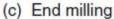


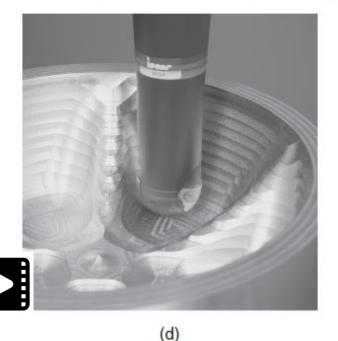
6


Some basic types of milling cutters and milling operations:

- a) Peripheral (aka plain milling)
- b) Face milling
- c) End milling
- d) Ball-end mill (with indexable coated-carbide inserts)
- e) End mill using <u>5-</u> axis NC machine

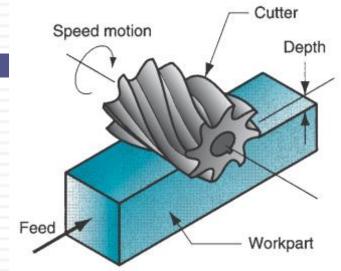

4-Flute Ball Nose End Mill

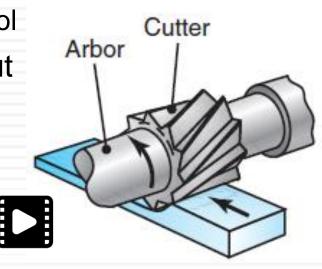


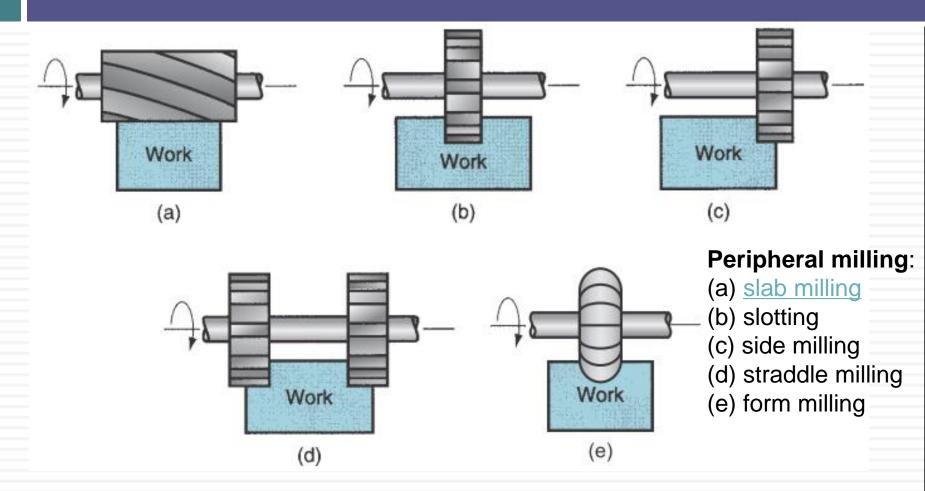


(b) Face milling

(e)

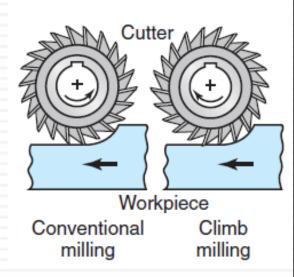

2. Peripheral Milling




Milling and Milling Machines:

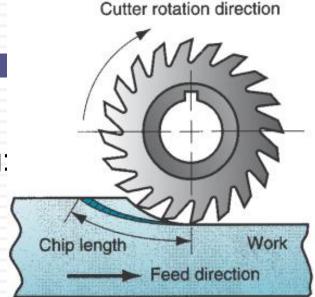
Peripheral Milling

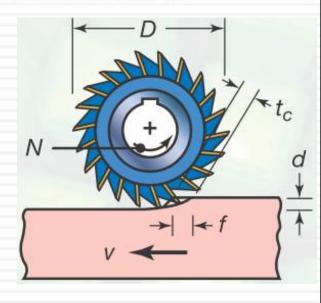
- Axis of cutter rotation: parallel to workpiece surface
- Cutter body:
 - Generally made of high-speed steel
 - Has # of teeth along its circumference
 - Each tooth acts like a single-cutting tool
- When cutter: longer than width of cut
 - ⇒ process is called slab milling
- Other types of peripheral milling are shown on the next slide



Conventional Milling and Climb Milling

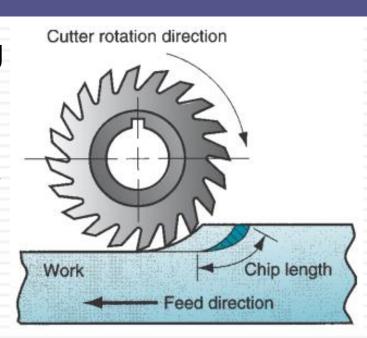
- Cutter rotation:
 - Conventional (aka up) milling,
 - Climb (aka down) milling
 - This is significant in operation




Milling and Milling Machines:

Peripheral Milling

Cont. Conventional / Climb Milling


- Conventional (more common) milling:
 - \blacksquare max. t_c is at end of cut
 - i.e. as tooth leaves workpiece (→)
- Advantage:
 - Tooth engagement: not function of workpiece surface characteristics
- Disadvantages:
 - If cutter teeth not sharp ⇒ tooth rubs on surface before cutting
 - Also: tool may chatter;
 workpiece may be pulled upward

Cont. Conventional / Climb Milling

- Climb milling:
 - Cutting starts at surface of workpiece where chip is thickest →
- Advantage:
 - Downward component of F_c holds workpiece in place (esp. thin parts)
- Disadvantages:
 - Requires rigid work-holding setup
 - Not suitable for workpieces with scale (e.g. hot-worked metals)
 - Note, scale \Rightarrow more wear \Rightarrow lower T (tool life)

Slab milling operation showing:

d: depth of cut

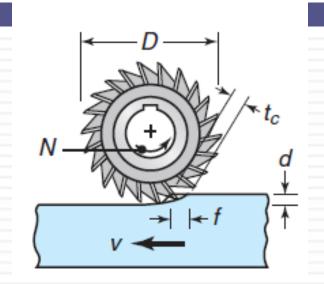
f: feed per tooth

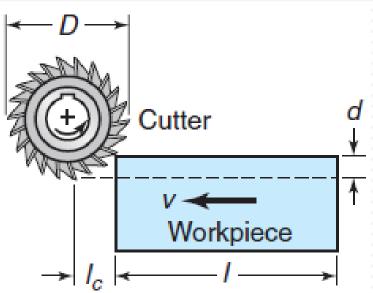
w: width of cut (not shown)

 t_c : chip depth of cut

v: workpiece speed (feed rate)

D: cutter diameter

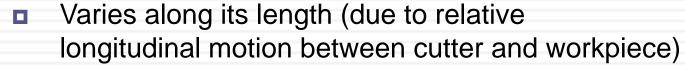

N: cutter rotational speed


n: number of teeth on cutter periphery

Schematic illustration of:

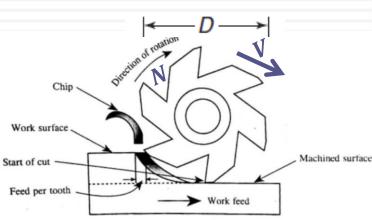
 l_c : cutter travel distance (horizontal) to reach full depth of cut

l: length of workpiece



Milling Parameters

 Cutting speed in peripheral milling is surface speed of cutter:

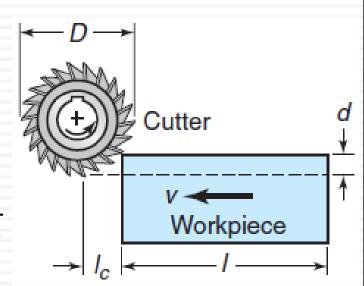

$$V = \pi DN$$

For straight-tooth cutter, approx. t_c :

$$t_c = 2f \sqrt{\frac{d}{D}}$$

Milling Parameters (cont.)

□ f: distance workpiece travels per tooth of cutter:

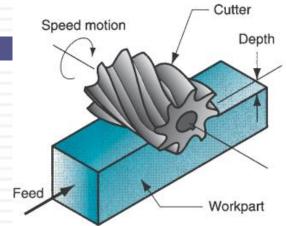

$$f = \frac{v}{Nn}$$

- Note, dimensional accuracy can be checked: [mm/tooth] = [mm/min]/[rev/min][num.of teeth/rev]
- Cutting time is given by:

$$t = \frac{l + l_c}{v}$$

- Note, l_c : horizontal extent of cutter's first contact with workpiece
- \blacksquare l_c can be approximated using:

$$l_c = \sqrt{d(D-d)}$$


Milling and Milling Machines:

Peripheral Milling

Milling Parameters (cont.)

□ Assuming $l_c \ll l \Rightarrow MRR$ is given by:

$$MRR = \frac{lwd}{t} = wdv$$

- Note, in slab milling: w is same as w of workpiece
- Also, as with turning, non-cutting time should be minimized
- Power requirement on spindle:
 - Calculated similar to technique used in drilling
 - Note, forces on cutter (tangential, radial, axial):
 - Difficult to calculate (since many variables are involved)
 - Many variables related to cutting-tool geometry

1

Summary of Peripheral Milling Parameters and Formulas

= (Torque)(ω), where $\omega = 2\pi N$ radians/min

```
N = Rotational speed of the cutter, rpm
      F = \text{Feed}, mm/rev
     D = Cutter diameter, mm
      n = Number of teeth on cutter
      \nu = \text{Linear speed of the workpiece or feed rate, mm/min}
      V = Surface speed of cutter m/min
        = \pi DN
                                              t_c = 2f \left| \frac{d}{D} \right|
      f = \text{Feed per tooth, mm/tooth}
        = \nu/Nn
                                                                       l_c = \sqrt{d(D-d)}
      l = \text{Length of cut, mm}
      t = Cutting time, s or min
        = (l + l_c)/\nu, where l_c = extent of the cutter's first contact with the workpiece
 MRR = mm^3/min
        = wdv, where w is the width of cut
Torque = N \cdot m
        = F_c D/2
Power = kW
```

EXAMPLE 24.1

Material-removal Rate and Cutting Time in Slab Milling

A slab-milling operation is being carried out on a 300-mm-long, 100-mm-wide annealed mild-steel block at a feed f 0.25 mm/tooth and a depth of cut d 3.0 mm. The cutter is D=50 mm in diameter, has 20 straight teeth, rotates at 100 rpm and, by definition, is wider than the block to be machined. Calculate the material-removal rate and calculate the cutting time.

Solution

Material-removal Rate, Power, Torque, and Cutting Time in Slab Milling

The linear speed of the workpiece is

$$v = fNn = (0.25)(100)(20) = 500 \text{ mm/min}$$

The material-removal rate is

$$MMR = (100)(3)(500) = 150,000 \,\mathrm{mm}^3 / \mathrm{min}$$

The cutting time is

$$t = \frac{300 + \sqrt{Dd}}{500} = \frac{300 + \sqrt{(50)(3)}}{500} = 0.62 \text{ min} = 37.2 \text{ s}$$

3. Face Milling

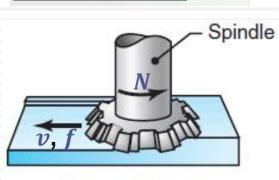
Milling and Milling Machines:

Face Milling

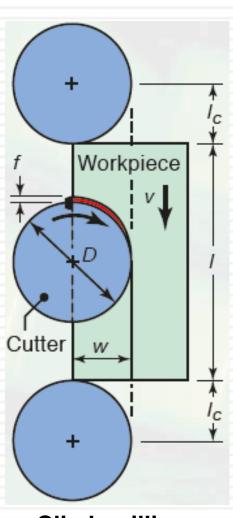
- Mounted on a spindle
- Axis of rotation: ⊥ to workpiece surface
- Removes material in manner shown (\rightarrow)
- Cutting teeth:
 - Example: carbide inserts
 - Mounted on the cutter body

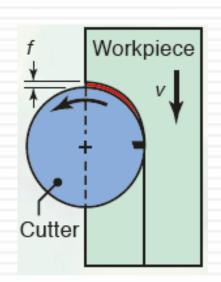
Precision Face Milling

Indexable

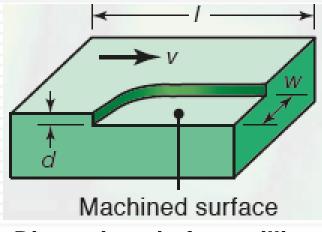

Face Mill

(FAST)

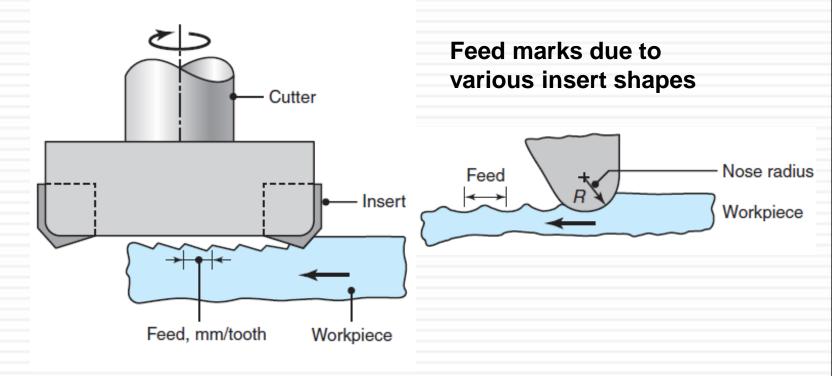

- Cutter: rotates at rotational speed, N
- Workpiece: moves along straight path at linear speed, v
- Rotates as: climb or conventional milling (next slide)



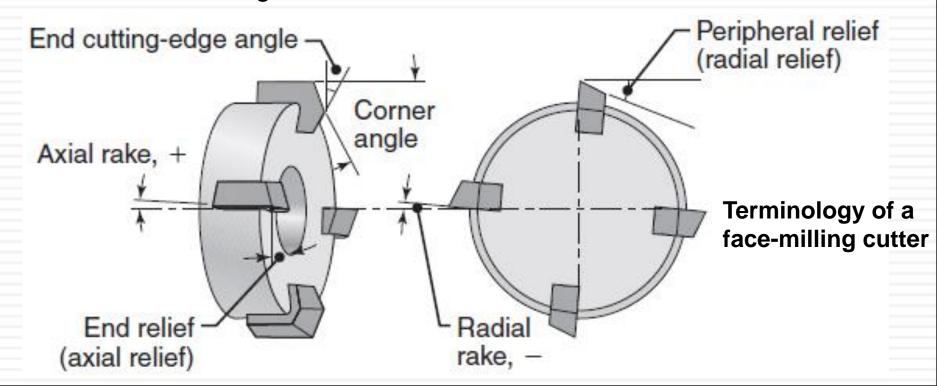
(b) Face milling


Milling and Milling Machines: Face Milling

Climb milling


Conventional milling

Dimensions in face milling

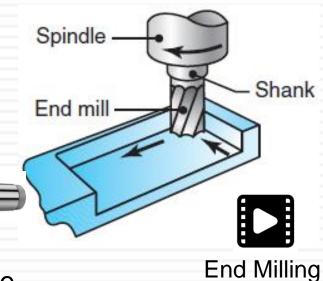

Milling and Milling Machines: Face Milling

- Relative motion between cutter teeth and workpiece ⇒
 feed marks on machined surface (↓)
 - Note, these marks are similar to those left by turning
 - Roughness of workpiece depends on: corner geometry and f

Milling and Milling Machines: Face Milling

- Face-milling cutter: terminology and various angles:
 - 2 cutting angles
 - 2 rake angles
 - 2 relief angles

4. End Milling



Milling and Milling Machines: End Milling

- End milling:
 - Important and common machining process
 - Versatile: produces various profiles, curved surfaces
- Cutter (aka end mill):
 - Has straight shank, or
 - Tapered shank (for larger sizes)
 - Mounted into spindle of milling machine
 - Made of HSS or carbide inserts (like face milling)

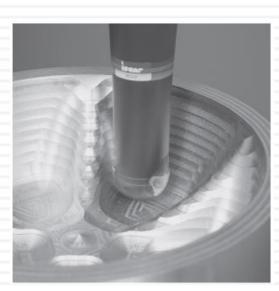
Taper Shank

- Usually rotates on axis ⊥ to workpiece surface
- Can be tilted to conform to curved surfaces

(CNC)

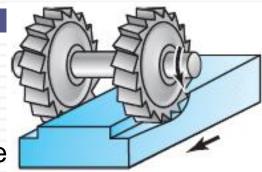
Milling and Milling Machines:

End Milling


Cont. end mills:

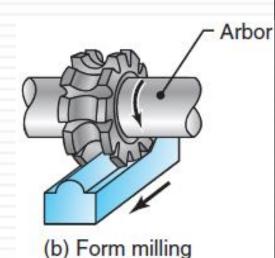
- Available with hemispherical ends (aka ball nose mills →)
- Can produce variety of surfaces, at any depth
- Used in machining dies and molds
- Examples: curved, stepped, pocketed surfaces (→)
- Can remove material on both end and cylindrical cutting edges

Ball Nose End Mill


5. Other Milling Operations

Milling and Milling Machines: Other Milling Operations and Milling Cutters

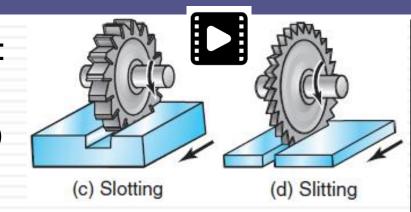
Straddle milling:


- Two or more cutters: mounted on an arbor
- Used to machine 2 // surfaces on workpiece

(a) Straddle milling

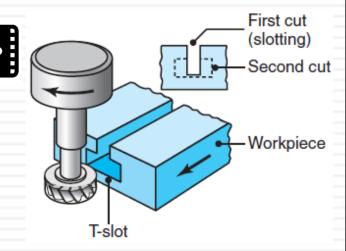
■ Form milling:

- Produces curved profiles
- Uses cutters with specially shaped teeth
- Also used for cutting gear teeth


Profile

Milling

Milling and Milling Machines: Other Milling Operations and Milling Cutters


Slotting & Slitting operations:

- Performed with circular cutters
- Slitting saws: thin (usu. < 5 mm)

T-slot cutters:

- Used to mill T-slots
- Application: machine-tool worktables for <u>clamping workpieces</u>
- Step 1: slot is milled with end mill
- Step 2: cutter machines profile of T-slot in one pass

Milling and Milling Machines: Milling Process Capabilities

- Table 24.2 shows (for milling), conventional ranges of:
 - □ Speeds (vary widely: $30 3000 \, m/\text{min}$)
 - Feed per tooth (typically: 0.1 0.5 mm)
 - Depths of cut (usually: 1 8 mm)
- Note, large range of values shown is due to variance in:
 - Workpiece material
 - Workpiece condition
 - Cutting-tool material
 - Process parameters
- Note, cutting fluid recommendations:
 - Same as those used with turning/hole making operations

General Recommendations for Milling Operations

		General-purpose starting conditions		Range of conditions	
		Feed mm/tooth	Speed m/min	Feed mm/tooth	Speed m/min
Material	Cutting tool				
Low-carbon and free-machining steels	Uncoated carbide, coated carbide, cermets	0.13-0.20	120–180	0.085-0.38	90–425
Alloy steels					
Soft	Uncoated, coated, cermets	0.10-0.18	90–170	0.08-0.30	60–370
Hard	Cermets, PcBN	0.10-0.15	180-210	0.08-0.25	75–460
Cast iron, gray Soft	Uncoated, coated, cermets, SiN	0.10-10.20	120–760	0.08-0.38	90–1370
Hard	Cermets, SiN, PcBN	0.10-0.20	120-210	0.08-0.38	90–460
Stainless steel, Austenitic	Uncoated, coated, cermets	0.13-0.18	120–370	0.08-0.38	90–500
High-temperature alloys Nickel based	Uncoated, coated, cermets, SiN, PcBN	0.10-0.18	30–370	0.08-0.38	30–550
Titanium alloys	Uncoated, coated, cermets	0.13-0.15	50-60	0.08-0.38	40–140
Aluminum alloys					
Free machining	Uncoated, coated, PCD	0.13-0.23	610–900	0.08-0.46	300–3000
High silicon	PCD	0.13	610	0.08-0.38	370-910
Copper alloys	Uncoated, coated, PCD	0.13-0.23	300–760	0.08-0.46	90–1070
Plastics	Uncoated, coated, PCD	0.13-0.23	270–460	0.08-0.46	90–1370

Note: Depths of cut, d, usually are in the range of 1 to 8 mm. PcBN: polycrystalline cubic-boron nitride. PCD: polycrystalline diamond. See also Table 23.4 for range of cutting speeds within tool material groups.

6. Milling Machines

Milling and Milling Machines: Milling Machines

- Milling machines:
 - Among most versatile/useful machine tools
 - First milling machines: 1820
 - Machines today have many features
 - Standard milling machines now being replaced with computer controls (CNC) and machining centers
 - Manually controlled machines: inexpensive, still used today for small production
 - Typical machines are described in upcoming slides

Milling and Milling Machines: Milling Machines

Column-and-knee-type Machines

- Used for general-purpose milling operations
- Most common milling machines
- Spindle on which cutter is mounted may be either (next):
 - Horizontal (for peripheral milling)
 - Vertical (for face and end milling, boring, drilling)
- Usually have 3 axes of movement
 - aka plain milling machines
 - Motion takes place manually or powered

Milling and Milling Machines: Milling Machines

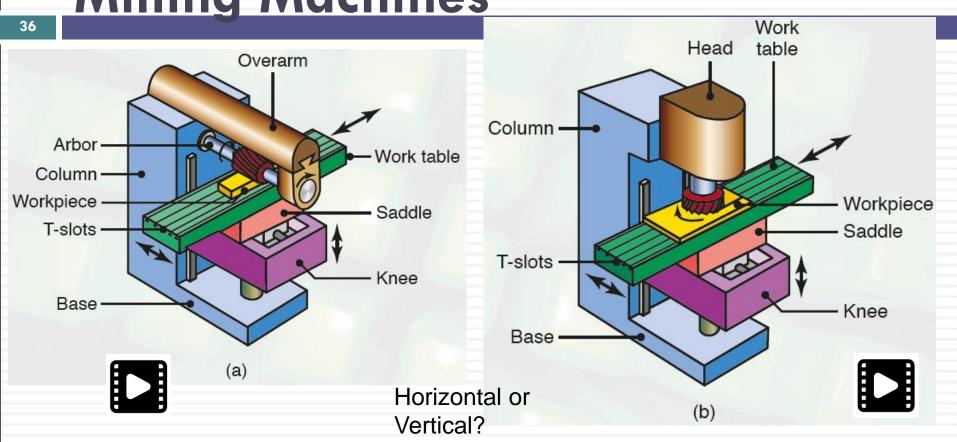
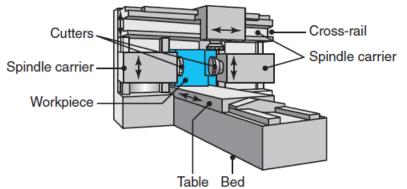
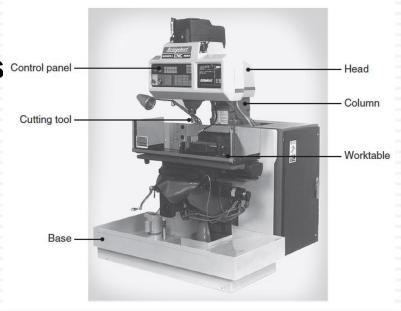



Fig. 24.15 (a) Schematic illustration of a horizontal-spindle column-and-knee-type milling machine. (b) Schematic illustration of a vertical-spindle column-and-knee-type milling machine. Source: After G. Boothroyd.

Milling and Milling Machines: Milling Machines Cutters

Bed-type Milling Machines

- Worktable replaces knee
- Can move only longitudinally



Other Types of Milling Machines Control panel

Planer-type milling machines:

- Have several heads and cutters to mill different surfaces
- □ Computer numerical-control (CNC) machines (→):
 - Used for high production quantities
 - Capable of: milling, drilling, boring, tapping

