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Chapter 5 Preview
Looking Ahead: Working with Forces

• In this chapter, you’ll learn expressions for the different 

forces we’ve seen, and you’ll learn how to use them to 

solve problems. 

• You’ll learn how a balance between weight and drag 

forces leads to a maximum speed for a skydiver.
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Chapter 5 Preview
Looking Ahead: Equilibrium Problems

• The boy is pushing as hard as he can, but the sofa isn’t 

going anywhere. It’s in equilibrium—the sum of the 

forces on it is zero. 

• You’ll learn to solve equilibrium problems by using the 

fact that there is no net force. 
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Chapter 5 Preview
Looking Ahead: Dynamics Problems

• Newton’s laws allow us to relate the forces acting on an 

object to its motion, and so to solve a wide range of 

dynamics problems. 

• This skier is picking up speed. You’ll see how her 

acceleration is determined by the forces acting on her. 
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Chapter 5 Preview
Looking Back: Free-Body Diagrams

• In chapter 4 you learned to draw a free-body diagram 

showing the magnitudes and directions of the forces acting 

on an object.

• In this chapter, you’ll use free-body diagrams as an 

essential problem-solving tool for single objects and 

interacting objects.
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Chapter 5 Preview
Stop to Think

An elevator is suspended from a cable. It is moving upward 

at a steady speed. Which is the correct free-body diagram 

for this situation?
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Equilibrium

• We say that an object at rest is in static equilibrium.

• An object moving in a straight line at a constant speed               

is in dynamic equilibrium.

• In both types of equilibrum there is no net force acting on 

the object:
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Reading Question 5.1

Which of these objects is in equilibrium?

A. A car driving down the road at a constant speed

B. A block sitting at rest on a table

C. A skydiver falling at a constant speed

D. All of the above
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Example 5.4 Tension in towing a car

A car with a mass of 1500 kg is being towed at a steady 

speed by a rope held at a 20° angle from the horizontal.

A friction force of 320 N opposes the car’s motion.

What is the tension in the rope?
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Example 5.4 Tension in towing a car (cont.)

PREPARE The car is moving in a straight line at a constant 

speed              so it is in dynamic equilibrium and must have 

The figure shows three contact forces acting 

on the car—the tension force , friction   , and the normal 

force    —and the long-range force of gravity   .

These four forces are shown on the free-body diagram.
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Example 5.4 Tension in towing a car (cont.)

SOLVE This is still an equilibrium problem, even though the car 

is moving, so our problem-solving procedure is unchanged. With 

four forces, the requirement of equilibrium is

 Fx = nx + Tx + fx + wx = max = 0

 Fy = ny + Ty + fy + wy = may = 0

We can again determine the horizontal and vertical components 

of the forces by “reading” the free-body diagram. The results are 

shown in the table.
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Example 5.4 Tension in towing a car (cont.)

With these components, Newton’s second law becomes

T cos  f = 0

n + T sin  w = 0

The first equation can be used to solve for the tension in the 

rope:

to two significant figures. It turned out that we did not need 

the y-component equation in this problem. We would need it 

if we wanted to find the normal force .
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Example 5.4 Tension in towing a car (cont.)

ASSESS Had we pulled the car with a horizontal rope, the 

tension would need to exactly balance the friction force of 

320 N. Because we are pulling at an angle, however, part of 

the tension in the rope pulls up on the car instead of in the 

forward direction. Thus we need a little more tension in the 

rope when it’s at an angle, so our result seems reasonable.
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QuickCheck 5.1

A ring, seen from above, is pulled on by three forces. The 

ring is not moving. How big is the force F?

A. 20 N

B. 10 cos N

C. 10 sin N

D. 20 cos N

E. 20 sin N
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Example Problem

A 100-kg block with a weight of 980 N hangs on a rope. 

Find the tension in the rope if the block is stationary, then if 

it’s moving upward at a steady speed of 5 m/s.

The block is in static equilibrium if it is stationary and in 

dynamic equilibrium if it’s moving at a steady speed. In 

both cases the tension in the rope must equal the weight: 

980 N. 
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Dynamics and Newton’s Second Law

• The essence of Newtonian mechanics can be expressed in 

two steps:

• The forces acting on an object determine its acceleration

• The object’s motion can be found by using    in the 

equations of kinematics.

• Thus Newton’s second law,               , is
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Example 5.5 Putting a golf ball

A golfer putts a 46 g ball with a speed of 3.0 m/s. Friction 

exerts a 0.020 N retarding force on the ball, slowing it 

down. Will her putt reach the hole, 10 m away?

PREPARE The figure is a visual overview of the problem. 

We’ve collected the known information, drawn a sketch, 

and identified what we want to find.
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Example 5.5 Putting a golf ball (cont.)

The motion diagram shows that the ball is slowing down as 

it rolls to the right, so the acceleration vector points to the 

left. Next, we identify the forces acting on the ball and show 

them on a free-body diagram. Note that the net force points 

to the left, as it must because the acceleration points to the 

left.
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Example 5.5 Putting a golf ball (cont.)

SOLVE Newton’s second law in component form is

Fx = nx + fx + wx = 0  f + 0 = max

Fy = ny + fy + wy = n + 0  w = may = 0

We’ve written the equations as sums, as we did with 

equilibrium problems, then “read” the values of the force 

components from the free-body diagram. The components 

are simple enough in this problem that we don’t really need 

to show them in a table. It is particularly important to notice 

that we set ay = 0 in the second equation. This is because the 

ball does not move in the y-direction, so it can’t have any 

acceleration in the y-direction. This will be an important 

step in many problems.
© 2016 Pearson Education, Ltd.
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Example 5.5 Putting a golf ball (cont.)

The first equation is f = max , from which we find

To avoid rounding errors we keep an extra digit in this 

intermediate step in the calculation. The negative sign 

shows that the acceleration is directed to the left, as 

expected.
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Example 5.5 Putting a golf ball (cont.)

Now that we know the acceleration, we can use kinematics 

to find how far the ball will roll before stopping. We don’t 

have any information about the time it takes for the ball to 

stop, so we’ll use the kinematic equation 

(vx)f
2 = (vx)i

2 + 2ax (xf  xi). This gives

If her aim is true, the ball will just make it into the hole.
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Example 5.6 Towing a car with acceleration

A car with a mass of 1500 kg is being towed by a rope held 

at a 20° angle to the horizontal. A friction force of 320 N 

opposes the car’s motion. What is the tension in the rope if 

the car goes from rest to 12 m/s in 10 s?
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Example 5.6 Towing a car with acceleration 
(cont.)

PREPARE You should recognize that this problem is almost 

identical to Example 5.4. The difference is that the car is 

now accelerating, so it is no longer in equilibrium. This 

means, as shown in the figure, that the net force is not zero.
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Example 5.6 Towing a car with acceleration 
(cont.)
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Example 5.6 Towing a car with acceleration 
(cont.)

SOLVE Newton’s second law in component form is

Fx = nx + Tx + fx + wx = max

Fy = ny + Ty + fy + wy = may = 0

We’ve again used the fact that ay = 0 for motion that is 

purely along the x-axis.

The Newton’s second law in component form is:

T cos  f = max

n + T sin  w = 0

© 2016 Pearson Education, Ltd.
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Example 5.6 Towing a car with acceleration 
(cont.)

Because the car speeds up from rest to 12 m/s in 10 s, we 

can use kinematics to find the acceleration:
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Example 5.6 Towing a car with acceleration 
(cont.)

We can now use the first Newton’s-law equation above to 

solve for the tension. We have

ASSESS The tension is substantially greater than the 340 N 

found in Example 5.4. It takes much more force to 

accelerate the car than to keep it rolling at a constant speed.

© 2016 Pearson Education, Ltd.
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Example Problem

A 100-kg block with a weight of 980 N hangs on a rope. 

Find the tension in the rope if the block is accelerating 

upwards at 5 m/s2.

The block is not in equilibrium; it is accelerating. Newton’s 

second law gives m  a = T  980 or T = 1480 N.
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Example Problem

A ball weighing 50 N is pulled back by a rope by an angle 

of 20°. What is the tension in the pulling rope?

© 2016 Pearson Education, Ltd.
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Example Problem

© 2016 Pearson Education, Ltd.

The ball is in static equilibrium.

The tension in the upper rope is 53 N and the tension in 

the horizontal rope is 18 N.

1 1cos(20 ) 0 53
cos(20 )

w
T w T N     



2 1 2 1sin(20 ) 0 sin(20 ) 18T T T T N      
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Example Problem

A sled with a mass of 20 kg slides along frictionless ice at 

4.5 m/s. It then crosses a rough patch of snow that exerts a 

friction force of 12 N. How far does it slide on the snow 

before coming to rest?

© 2016 Pearson Education, Ltd.

The acceleration is -0.6 m/s2.

The initial velocity is 4.5 m/s and the final velocity is 0.

The distance traveled before stopping is 17 m.
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Section 5.3 Mass and Weight
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Mass, Weight and Apparent Weight

• Mass and weight are not the 

same thing.

• Mass is a quantity that 

describes an object’s inertia, 

its tendency to resist being 

accelerated.

• Weight is the gravitational force exerted on an object by a 

planet:

w = –mg
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Apparent Weight

• The weight of an object is the force of gravity on that 

object.

• Your sensation of weight is due to contact forces

supporting you.

• Let’s define your apparent weight wapp in terms of the 

force you feel:
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Apparent Weight

• The only forces acting on 

the man are the upward 

normal force of the floor 

and the downward weight 

force:

n = w + ma

wapp = w + ma

• Thus wapp > w and the man 

feels heavier than normal.
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Example 5.8 Apparent weight in an elevator

Anis’s mass is 70 kg. He is standing on a scale in an 

elevator that is moving at 5.0 m/s. As the elevator stops, the 

scale reads 750 N. Before it stopped, was the elevator 

moving up or down? How long did the elevator take to 

come to rest?

PREPARE The scale reading as the elevator comes to rest, 

750 N, is Anis’s apparent weight.

Anis’s actual weight is: 

w = mg = (70 kg)(9.80 m/s2) = 686 N
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Example 5.8 Apparent weight in an elevator 
(cont.)

This is an intermediate step in the calculation, so we are 

keeping an extra significant figure. Anis’s apparent weight, 

which is the upward force of the scale on him, is greater 

than his actual weight, so there is a net upward force on 

Anis. His acceleration must be upward as well, so we can 

use this figure as the free-body diagram for this problem. 

We can find the net force on Anis, and then we can use this 

net force to determine his acceleration. Once we know the 

acceleration, we can use kinematics to determine the time it 

takes for the elevator to stop.
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Example 5.8 Apparent weight in an elevator 
(cont.)

SOLVE We can read components of vectors from the figure. 

The vertical component of Newton’s second law for Anis’s

motion is

Fy = n  w = may

n is the normal force, which is the scale force on Anis, 

750 N. w is his weight, 686 N.

We can thus solve for ay:
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Example 5.8 Apparent weight in an elevator 
(cont.)

The acceleration is positive and so is directed upward, 

exactly as we assumed—a good check on our work. The 

elevator is slowing down, but the acceleration is directed 

upward. This means that the elevator was moving 

downward, with a negative velocity, before it stopped.
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Example 5.8 Apparent weight in an elevator 
(cont.)

To find the stopping time, we can use the kinematic 

equation

(vy)f = (vy)i + ay Δt

The elevator is initially moving downward, so (vy)i =  5.0 

m/s, and it then comes to a halt, so (vy)f = 0. We know the 

acceleration, so the time interval is
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Example 5.8 Apparent weight in an elevator 
(cont.)

ASSESS Think back to your experiences riding elevators. If 

the elevator is moving downward and then comes to rest, 

you “feel heavy.” This gives us confidence that our analysis 

of the motion is correct. And 5.0 m/s is a pretty fast 

elevator: At this speed, the elevator will be passing more 

than one floor per second. If you’ve been in a fast elevator 

in a tall building, you know that 5.5 s is reasonable for the 

time it takes for the elevator to slow to a stop.

© 2016 Pearson Education, Ltd.
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Reading Question 5.2

You are riding in an elevator that is accelerating upward. 

Suppose you stand on a scale. The reading on the scale is

A. Greater than your true weight.

B. Equal to your true weight.

C. Less than your true weight.

© 2016 Pearson Education, Ltd.
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Weightlessness

• A person in free fall has zero apparent weight.

• “Weightless” does not mean “no weight.”

• An object that is weightless has no apparent weight.

© 2016 Pearson Education, Ltd.
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QuickCheck 5.4

What are the components of     in the coordinate system 

shown?

© 2016 Pearson Education, Ltd.
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QuickCheck 5.4

What are the components of     in the coordinate system 

shown?
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QuickCheck 5.5

A 50-kg student (mg = 490 N) gets in a 1000-kg elevator at 

rest and stands on a metric bathroom scale. As the elevator 

accelerates upward, the scale reads

A. > 490 N

B. 490 N

C. < 490 N but not 0 N

D. 0 N

© 2016 Pearson Education, Ltd.
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QuickCheck 5.6

A 50-kg student (mg = 490 N) gets in a 1000-kg elevator at 

rest and stands on a metric bathroom scale. Sadly, the 

elevator cable breaks. What is the reading on the scale 

during the few seconds it takes the student to plunge to his 

doom?

A. > 490 N

B. 490 N

C. < 490 N but not 0 N

D. 0 N

© 2016 Pearson Education, Ltd.
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Example Problem

A 50-kg student gets in a 1000-kg elevator at rest. As the 

elevator begins to move, she has an apparent weight of 600 

N for the first 3 s. How far has the elevator moved, and in 

which direction, at the end of 3 s?

© 2016 Pearson Education, Ltd.
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Section 5.4 Normal Forces
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Normal Forces

• An object at rest on a table is subject to an upward force 

due to the table.

• This force is called the normal force because it is always 

directed normal, or perpendicular, to the surface of 

contact.

• The normal force adjusts itself so that the object stays on 

the surface without penetrating it.
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Example 5.9 Normal force on a pressed book

A 1.2 kg book lies on a table. The 

book is pressed down from above 

with a force of 15 N. What is the 

normal force acting on the book 

from the table below?

PREPARE The book is not moving 

and is thus in static equilibrium. 

We need to identify the forces 

acting on the book and prepare a 

free-body diagram showing these 

forces.
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Example 5.9 Normal force on a pressed book 
(cont.)

SOLVE Because the book is in static equilibrium, the net 

force on it must be zero. The only forces acting are in the 

y-direction, so Newton’s second law is

Fy = ny + wy + Fy = n  w  F = may = 0

We learned in the last section that the weight force is 

w = mg. The weight of the book is thus

w = mg = (1.2 kg)(9.8 m/s2) = 12 N

With this information, we see that the normal force exerted 

by the table is

n = F + w = 15 N + 12 N = 27 N
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Example 5.9 Normal force on a pressed book 
(cont.)

ASSESS The magnitude of the normal force is larger than the 

weight of the book. From the table’s perspective, the extra 

force from the hand pushes the book further into the atomic 

springs of the table. These springs then push back harder, 

giving a normal force that is greater than the weight of the 

book.

© 2016 Pearson Education, Ltd.
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Normal Forces

© 2016 Pearson Education, Ltd.
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Normal Forces
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QuickCheck 5.2

The box is sitting on the floor of an elevator. The elevator is 

accelerating upward. The magnitude of the normal 

force on the box is

A. n > mg

B. n = mg

C. n < mg

D. n = 0

E. Not enough information to tell
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QuickCheck 5.3

A box is being pulled to the right at steady speed by a rope 

that angles upward. In this situation:

A. n > mg

B. n = mg

C. n < mg 

D. n = 0

E. Not enough information 

to judge the size of the 

normal force

© 2016 Pearson Education, Ltd.
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Example 5.10 Acceleration of a downhill skier

A skier slides down a steep 27° slope. On a slope this steep, 

friction is much smaller than the other forces at work and 

can be ignored. What is the skier’s acceleration?

© 2016 Pearson Education, Ltd.



Slide 1-62

Example 5.10 Acceleration of a downhill skier 
(cont.)

PREPARE We choose a coordinate system tilted so that the x-axis 

points down the slope.

This greatly simplifies the analysis because with this choice 

ay = 0 (the skier does not move in the y-direction at all). The 

free-body diagram is based on the information in the figure.

© 2016 Pearson Education, Ltd.
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Example 5.10 Acceleration of a downhill skier 
(cont.)

SOLVE We can now use Newton’s second law in component form to 

find the skier’s acceleration:

Fx = wx + nx = max

Fy = wy + ny = may

Because points directly in the positive y-direction, ny = n and 

nx = 0. The figure showed the important fact that the angle between 

and the negative y-axis is the same as the slope angle . With this 

information, the components of are wx = w sin = mg sin and 

wy = w cos = mg cos, where we used the fact that w = mg. With 

these components in hand, Newton’s second law becomes

Fx = wx + nx = mx g sin = max

Fy = wy + ny = mg cos + n = may = 0
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Example 5.10 Acceleration of a downhill skier 
(cont.)

In the second equation we used the fact that ay = 0. The m 

cancels in the first of these equations, leaving us with

ax = g sin

This is the expression for acceleration on a frictionless 

surface that we presented, without proof, in Chapter 3. Now 

we’ve justified our earlier assertion. We can use this to 

calculate the skier’s acceleration:

ax = g sin = (9.8 m/s2) sin 27° = 4.4 m/s2
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Example 5.10 Acceleration of a downhill skier 
(cont.)

ASSESS Our result shows that when  = 0, so that the slope 

is horizontal, the skier’s acceleration is zero, as it should be. 

Further, when  = 90° (a vertical slope), his acceleration is 

g, which makes sense because he’s in free fall when  = 90°. 

Notice that the mass canceled out, so we didn’t need to 

know the skier’s mass. We first saw the formula for the 

acceleration, but now we see the physical reasons behind it.
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Static Friction

• Static friction is the force that 

a surface exerts on an object 

to keep it from slipping across 

the surface.

• To find the direction of    , 

decide which way the object 

would move if there were no 

friction. The static friction 

force then points in the 

opposite direction.
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Static Friction

• The box is in static 

equilibrium.

• The static friction force must 

exactly balance the pushing 

force.
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Static Friction

• The harder the woman pushes, 

the harder the friction force 

from the floor pushes back.

• If the woman pushes hard 

enough, the box will slip and 

start to move. 

• The static friction force has a 

maximum possible magnitude:

fs max = µsn

where µs is called the 

coefficient of static friction.
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Static Friction

• The direction of static friction is such as to oppose motion.

• The magnitude fs of static friction adjusts itself so that the 

net force is zero and the object doesn’t move.

• The magnitude of static friction cannot exceed the 

maximum value fs max . If the friction force needed to keep 

the object stationary is greater than 

fs max, the object slips and starts to move.
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QuickCheck 5.7

A box on a rough surface is pulled by a horizontal rope with 

tension T. The box is not moving. In this situation:

A. fs > T

B. fs = T

C. fs < T

D. fs = s mg

E. fs = 0

© 2016 Pearson Education, Ltd.
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Kinetic Friction

• Kinetic friction, unlike static friction, has a nearly constant 

magnitude given by

fk = µkn

where µk is called the coefficient of kinetic friction.

© 2016 Pearson Education, Ltd.
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Friction Forces

© 2016 Pearson Education, Ltd.



Slide 1-74

Working with Friction Forces

© 2016 Pearson Education, Ltd.
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QuickCheck 5.8

A box with a weight of 100 N is at rest. It is then pulled by a 

30 N horizontal force. 

Does the box move?

A. Yes

B. No

C. Not enough information to say

© 2016 Pearson Education, Ltd.
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Example 5.11 Finding the force to slide a sofa

Sarah wants to move her 32 kg sofa to a different room in 

the house. She places “sofa sliders,” slippery disks with 

k = 0.080, on the carpet, under the feet of the sofa. She 

then pushes the sofa at a steady 0.40 m/s across the floor. 

How much force does she apply to the sofa?
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Example 5.11 Finding the force to slide a sofa 
(cont.)

PREPARE Let’s assume the sofa slides to the right. In this 

case, a kinetic friction force   , opposes the motion by 

pointing to the left. In the figure, we identify the forces 

acting on the sofa and construct a free-body diagram.
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Example 5.11 Finding the force to slide a sofa 
(cont.)

SOLVE The sofa is moving at a constant speed, so it is in 

dynamic equilibrium with                This means that the x- and y-

components of the net force must be zero:

Fx = nx + wx + Fx + ( fk)x = 0 + 0 + F  fk = 0

Fy = ny + wy + Fy + ( fk)y = n  w + 0 + 0 = 0

In the first equation, the x -component of       is equal to fk

because is directed to the left. Similarly, wy = w because the 

weight force points down.

From the first equation, we see that Sarah’s pushing force is 

F = fk. To evaluate this, we need fk. Here we can use our model 

for kinetic friction:

© 2016 Pearson Education, Ltd.
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Example 5.11 Finding the force to slide a sofa 
(cont.)

Let’s look at the vertical motion first. The second equation 

ultimately reduces to

n  w = 0

The weight force w = mg, so we can write

n = mg

This is a common result we’ll see again. The force that Sarah 

pushes with is equal to the friction force, and this depends on the 

normal force and the coefficient of kinetic friction, k = 0.080:

F = fk = kn = kmg

= (0.080)(32 kg)(9.80 m/s2) = 25 N

© 2016 Pearson Education, Ltd.



Slide 1-80

Causes of Friction

• All surfaces are very rough on 

a microscopic scale.

• When two objects are placed in 

contact, the high points on one 

surface become jammed 

against the high points on the 

other surface.

• The amount of contact depends 

on how hard the surfaces are 

pushed together.

© 2016 Pearson Education, Ltd.
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QuickCheck 5.9

A box is being pulled to the right over a rough surface. 

T > fk, so the box is speeding up. Suddenly the rope breaks. 

What happens? The box

A. Stops immediately. 

B. Continues with the speed it had when the rope broke.

C. Continues speeding up for a short while, then slows 

and stops. 

D. Keeps its speed for a short while, then slows and stops.

E. Slows steadily until it stops.
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Reading Question 5.3

In general, the coefficient of static friction is

A. Smaller than the coefficient of kinetic friction.

B. Equal to the coefficient of kinetic friction.

C. Greater than the coefficient of kinetic friction.
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Example Problem

A wooden box, with a mass of 22 kg, is pulled at a constant 

speed with a rope that makes an angle of 25° with the 

wooden floor (μs=μs(wood-wood) = 0.5). 

What is the tension in the rope?

© 2016 Pearson Education, Ltd.

( )

sin(25 ) 0

cos(25 ) 0 96.5 N
cos(25 ) sin(25 )

0.5

s
s

s

s s s wood wood

T n mg
mg

T f T

f n n n




  

   


     
     



Section 5.7 Interacting Objects

© 2016 Pearson Education, Ltd.



Slide 1-85

Interacting Objects

• Newton’s third law states:

• Every force occurs as one member of an action/reaction 

pair of forces. The two members of the pair always act on 

different objects.

• The two members of an action/reaction pair point in 

opposite directions and are equal in magnitude.
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Objects in Contact

• To analyze block A’s motion, we 

need to identify all the forces acting 

on it and then draw its free-body 

diagram. 

• We repeat the same steps to analyze 

the motion of block B.

• However, the forces on A and B are 

not independent: Forces           acting on block A and           acting on 

block B are an action/reaction pair and thus have the same 

magnitude. 

• Because the two blocks are in contact, their accelerations must be 

the same: aAx = aBx = ax.

• We can’t solve for the motion of one block without considering the 

motion of the other block.
© 2016 Pearson Education, Ltd.
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Example 5.15 Pushing two blocks

The figure shows a 5.0 kg block A being pushed with a 3.0 

N force. In front of this block is a 10 kg block B; the two 

blocks move together. What force does block A exert on 

block B?
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Example 5.15 Pushing two blocks (cont.)

PREPARE The visual overview of the figure lists the known 

information and identifies FA on B as what we’re trying to 

find. Then, we’ve drawn separate force identification 

diagrams and separate free-body diagrams for the two 

blocks. Both blocks have a weight force and a normal force, 

so we’ve used subscripts A and B to distinguish between 

them.
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Example 5.15 Pushing two blocks (cont.)

The force is the contact 

force that block A exerts on B; 

it forms an action/reaction 

pair with the force that 

block B exerts on A. Notice 

that force is drawn acting 

on block B; it is the force of A 

on B. Force vectors are always drawn on the free-body 

diagram of the object that experiences the force, not the object 

exerting the force. Because action/reaction pairs act in opposite 

directions, force           pushes backward on block A and appears 

on A’s free-body diagram.
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Example 5.15 Pushing two blocks (cont.)

SOLVE We begin by writing Newton’s second 

law in component form for each block. Because 

the motion is only in the x-direction, we need 

only the x-component of the second law. For 

block A,

Fx = (FH)x + (FB on A)x = mAaAx

The force components can be “read” from the free-body 

diagram, where we see pointing to the right and

pointing to the left. Thus

FH  FB on A = mAaAx
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Example 5.15 Pushing two blocks (cont.)

For B, we have

Fx = (FA on B)x = FA on B = mBaBx

We have two additional pieces of information: 

First, Newton’s third law tells us that FB on A = FA on B. 

Second, the boxes are in contact and must have the same 

acceleration ax; that is, aAx = aBx = ax. With this information, 

the two x-component equations become

FH - FA on B = mAax

FA on B = mBax
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Example 5.15 Pushing two blocks (cont.)

FH  FA on B = mAax

FA on B = mBax

Our goal is to find FA on B, so we need to eliminate the 

unknown acceleration ax. From the second equation, 

ax = FA on B/mB. Substituting this into the first equation gives

This can be solved for the force of block A on block B, 

giving

© 2016 Pearson Education, Ltd.
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Example 5.15 Pushing two blocks (cont.)

ASSESS Force FH accelerates both blocks, a total mass of 15 

kg, but force FA on B accelerates only block B, with a mass of 

10 kg. Thus it makes sense that FA on B  FH.
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QuickCheck 5.12

Boxes A and B are being pulled to the right on a frictionless 

surface; the boxes are speeding up. Box A has a larger mass 

than Box B. How do the two tension forces compare?

A. T1 > T2

B. T1 = T2

C. T1 < T2

D. Not enough information to tell
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QuickCheck 5.13

Boxes A and B are sliding to the right on a frictionless 

surface. Hand H is slowing them. Box A has a larger mass 

than Box B. Considering only the horizontal forces:

A. FB on H = FH on B = FA on B = FB on A

B. FB on H = FH on B > FA on B = FB on A

C. FB on H = FH on B < FA on B = FB on A

D. FH on B = FH on A > FA on B
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QuickCheck 5.14

The two masses are at rest. The pulleys are frictionless.

The scale reads

A. 0 kg

B. 5 kg

C. 10 kg
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Reading Question 5.5

Two boxes are suspended from a rope over a pulley. Each 

box has weight 50 N. What is the tension in the rope?

A. 25 N

B. 50 N

C. 100 N

D. 200 N
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Ropes

• The box is pulled by the 

rope, so the box’s free-body 

diagram shows a tension 

force    . 

• We make the massless 

string approximation that 

mrope = 0.

• Newton’s second law for the 

rope is thus

ΣFx = Fbox on rope = F – T = mropeax = 0
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Ropes

• Generally, the tension in a massless string or rope 

equals the magnitude of the force pulling on the end of 

the string or rope. As a result:

• A massless string or rope “transmits” a force undiminished 

from one end to the other: If you pull on one end of a rope 

with force F, the other end of the rope pulls on what it’s 

attached to with a force of the same magnitude F.

• The tension in a massless string or rope is the same from 

one end to the other.
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QuickCheck 5.10

All three 50-kg blocks are at rest. The tension in rope 2 is

A. Greater than the tension in rope 1. 

B. Equal to the tension in rope 1.

C. Less than the tension in rope 1.
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Pulleys

• The tension in a massless string is unchanged by passing 

over a massless, frictionless pulley.

• We’ll assume such an ideal pulley for problems in this 

chapter.
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QuickCheck 5.15

The top block is accelerated across a frictionless table by the 

falling mass m. The string is massless, and the pulley is both 

massless and frictionless. The tension in the string is

A. T < mg

B. T = mg

C. T > mg
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Example 5.18 Lifting a stage set

A 200 kg set used in a play is 

stored in the loft above the 

stage. The rope holding 

the set passes up and 

over a pulley, then 

is tied backstage. The 

director tells a 100 kg 

stagehand to lower the set. 

When he unties the rope, the 

set falls and the unfortunate man is hoisted into the loft. 

What is the stagehand’s acceleration?
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Example 5.18 Lifting a stage set (cont.)

PREPARE The figure shows 

the visual overview. The 

objects of interest are 

the stagehand M and 

the set S, for which 

we’ve drawn separate 

free-body diagrams. 

Assume a massless rope 

and a massless, frictionless 

pulley. Tension forces      and   are due to a massless rope 

going over an ideal pulley, so their magnitudes are the same.
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Example 5.18 Lifting a stage set (cont.)

SOLVE From the two free-body diagrams, 

we can write Newton’s second law in 

component form. For the man we have

FMy = TM  wM = TM  mMg = mMaMy

For the set we have

FSy = TS  wS = TS  mSg = mSaSy
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Example 5.18 Lifting a stage set (cont.)

Only the y-equations are needed. Because 

the stagehand and the set are connected by 

a rope, the upward distance traveled by one 

is the same as the downward distance 

traveled by the other. Thus the magnitudes 

of their accelerations must be the same, 

but, as the figure shows, their directions 

are opposite.
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Example 5.18 Lifting a stage set (cont.)

We can express this mathematically as 

aSy = aMy. We also know that the two 

tension forces have equal magnitudes, 

which we’ll call T. Inserting this 

information into the above equations 

gives

T  mMg = mMaMy

T  mSg = mSaMy
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Example 5.18 Lifting a stage set (cont.)

These are simultaneous equations in the 

two unknowns T and aMy. We can solve 

for T in the first equation to get

T = mMaMy + mMg

Inserting this value of T into the second 

equation then gives

mMaMy + mMg  mSg = mSaMy

which we can rewrite as

(mS  mM)g = (mS + mM)aMy
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Example 5.18 Lifting a stage set (cont.)

Finally, we can solve for the hapless stagehand’s 

acceleration:

This is also the acceleration with which the set falls. If the 

rope’s tension was needed, we could now find it from 

T = mMaMy+ mMg.

ASSESS If the stagehand weren’t holding on, the set would 

fall with free-fall acceleration g. The stagehand acts as a 

counterweight to reduce the acceleration.
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Summary: General Strategy
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Summary: General Strategy
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Summary: Important Concepts
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Summary: Important Concepts
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Summary: Applications
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Summary: Important Concepts
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