05 – p2 (Appendix A) – Area Moments of Inertia

STATICS, AGE-1330 Ahmed M El-Sherbeeny, PhD Fall-2025

Watch these videos first:

Basic concept of MOI

- Application 1

Application 2

Rectangular and Polar Moments of Inertia

Consider the area A in the x-y plane, Fig. A/2. The moments of inertia of the element dA about the x- and y-axes are, by definition, $dI_x =$ $-(y^2)dA$ and $dI_y = x^2 dA$, respectively. The moments of inertia of A about the same axes are therefore

$$I_x = \int y^2 dA$$

$$I_y = \int x^2 dA$$

$$I_y = \int x^2 dA$$

(A/1)

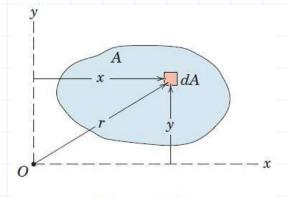


Figure A/2

The moment of inertia of dA about the pole O(z-axis) is, by similar definition, $dI_z = r^2 dA$. The moment of inertia of the entire area about O is

$$I_z = \int r^2 dA \tag{A/2}$$

The expressions defined by Eqs. A/1 are called *rectangular* moments of inertia, whereas the expression of Eq. A/2 is called the *polar* moment of inertia.* Because $x^2 + y^2 = r^2$, it is clear that

$$I_z = I_x + I_y \tag{A/3}$$

For an area whose boundaries are more simply described in rectangular coordinates than in polar coordinates, its polar moment of inertia is easily calculated with the aid of Eq. A/3.

Radius of Gyration

Consider an area A, Fig. A/3a, which has rectangular moments of inertia I_x and I_y and a polar moment of inertia I_z about O. We now visualize this area as concentrated into a long narrow strip of area A a distance k_x from the x-axis, Fig. A/3b. By definition the moment of inertia of the strip about the x-axis will be the same as that of the original area if k_x ² $A = I_x$. The distance k_x is called the radius of gyration of the area

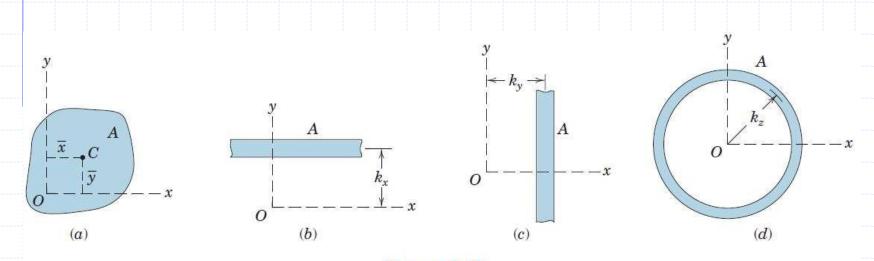


Figure A/3

about the *x*-axis. A similar relation for the *y*-axis is written by considering the area as concentrated into a narrow strip parallel to the *y*-axis as shown in Fig. A/3*c*. Also, if we visualize the area as concentrated into a narrow ring of radius k_z as shown in Fig. A/3*d*, we may express the polar moment of inertia as k_z ² $A = I_z$. In summary we write

$$I_x = k_x^2 A$$
 $k_x = \sqrt{I_x/A}$ $I_y = k_y^2 A$ or $k_y = \sqrt{I_y/A}$ $k_z = \sqrt{I_z/A}$ $k_z = \sqrt{I_z/A}$

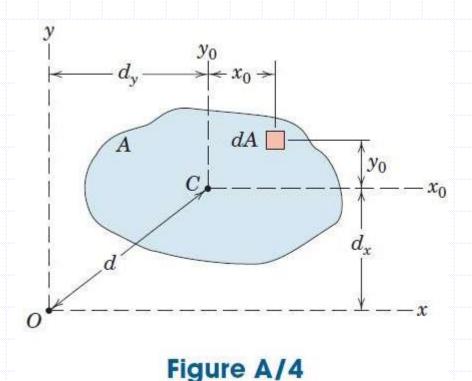
The radius of gyration, then, is a measure of the distribution of the area from the axis in question. A rectangular or polar moment of inertia may be expressed by specifying the radius of gyration and the area.

When we substitute Eqs. A/4 into Eq. A/3, we have

$$k_z^2 = k_x^2 + k_y^2 (A/5)$$

Transfer of Axes

The moment of inertia of an area about a noncentroidal axis may be easily expressed in terms of the moment of inertia about a parallel centroidal axis. In Fig. A/4 the x_0 - y_0 axes pass through the centroid C of the area. Let us now determine the moments of inertia of the area about the



parallel x-y axes. By definition, the moment of inertia of the element dA about the x-axis is

$$dI_x = (y_0 + d_x)^2 dA$$

Expanding and integrating give us

$$I_x = \int y_0^2 dA + 2d_x \int y_0 dA + d_x^2 \int dA$$

We see that the first integral is by definition the moment of inertia I_x about the centroidal x_0 -axis. The second integral is zero, since $\int y_0 dA = A\overline{y}_0$ and \overline{y}_0 is automatically zero with the centroid on the x_0 -axis. The third term is simply Ad_x^2 . Thus, the expression for I_x and the similar expression for I_y become

$$I_{x} = \overline{I}_{x} + Ad_{x}^{2}$$

$$I_{y} = \overline{I}_{y} + Ad_{y}^{2}$$
(A/6)

By Eq. A/3 the sum of these two equations gives

$$I_z = \overline{I}_z + Ad^2 \tag{A/6a}$$

Determine the moments of inertia of the rectangular area about the centroidal x_0 - and y_0 -axes, the centroidal polar axis z_0 through C, the x-axis, and the polar axis z through O.

Solution. For the calculation of the moment of inertia \overline{I}_x about the x_0 -axis, a horizontal strip of area b dy is chosen so that all elements of the strip have the same y-coordinate. Thus,

$$[I_x = \int y^2 dA]$$
 $\bar{I}_x = \int_{-h/2}^{h/2} y^2 b \, dy = \frac{1}{12} b h^3$ Ans.

By interchange of symbols, the moment of inertia about the centroidal y_0 -axis is

$$\bar{I}_{y} = \frac{1}{12}hb^{3} \qquad \qquad Ans.$$

The centroidal polar moment of inertia is

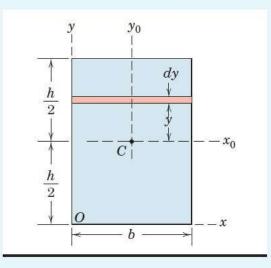
$$[\overline{I}_z = \overline{I}_x + \overline{I}_y] \hspace{1cm} \overline{I}_z = \frac{1}{12}(bh^3 + hb^3) = \frac{1}{12}A(b^2 + h^2) \hspace{1cm} Ans.$$

By the parallel-axis theorem the moment of inertia about the x-axis is

$$[I_x = \overline{I}_x + Ad_x^2]$$
 $I_x = \frac{1}{12}bh^3 + bh\left(\frac{h}{2}\right)^2 = \frac{1}{3}bh^3 = \frac{1}{3}Ah^2$ Ans.

We also obtain the polar moment of inertia about O by the parallel-axis theorem, which gives us

$$\begin{split} [I_z = \overline{I}_z + Ad^2] & I_z = \frac{1}{12}A(b^2 + h^2) + A\Bigg[\left(\frac{b}{2}\right)^2 + \left(\frac{h}{2}\right)^2\Bigg] \\ I_z = \frac{1}{3}A(b^2 + h^2) & Ans. \end{split}$$



Helpful Hint

1 If we had started with the secondorder element dA = dx dy, integration with respect to x holding yconstant amounts simply to multiplication by b and gives us the expression $y^2b dy$, which we chose at the outset.

Determine the moments of inertia of the triangular area about its base and about parallel axes through its centroid and vertex.

1 **Solution.** A strip of area parallel to the base is selected as shown in the figure, and it has the area dA = x dy = [(h - y)b/h] dy. By definition

$$[I_x = \int y^2 dA]$$
 $I_x = \int_0^h y^2 \frac{h - y}{h} b \, dy = b \left[\frac{y^3}{3} - \frac{y^4}{4h} \right]_0^h = \frac{bh^3}{12}$ Ans.

By the parallel-axis theorem the moment of inertia \overline{I} about an axis through the centroid, a distance h/3 above the x-axis, is

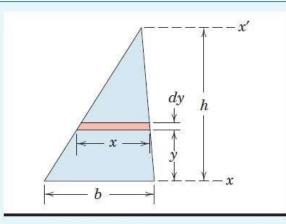
$$[\overline{I}=I-Ad^2]$$

$$\overline{I}=\frac{bh^3}{12}-\left(\frac{bh}{2}\right)\!\!\left(\frac{h}{3}\right)^2=\frac{bh^3}{36}$$
 Ans.

A transfer from the centroidal axis to the x'-axis through the vertex gives

$$[I=\overline{I}+Ad^2]$$

$$I_{x'}=rac{bh^3}{36}+iggl(rac{bh}{2}iggr)iggl(rac{2h}{3}iggr)^2=rac{bh^3}{4}$$
 Ans.



Helpful Hints

- 1 Here again we choose the simplest possible element. If we had chosen dA = dx dy, we would have to integrate $y^2 dx dy$ with respect to x first. This gives us $y^2x dy$, which is the expression we chose at the outset.
- 2 Expressing x in terms of y should cause no difficulty if we observe the proportional relationship between the similar triangles.

Calculate the moments of inertia of the area of a circle about a diametral axis and about the polar axis through the center. Specify the radii of gyration.

Solution. A differential element of area in the form of a circular ring may be used for the calculation of the moment of inertia about the polar z-axis through O since all elements of the ring are equidistant from O. The elemental area is $dA = 2\pi r_0 dr_0$, and thus,

$$[I_z = \int \, r^2 \, dA] \qquad \qquad I_z = \int_0^r r_0^{\,2} (2\pi r_0 \, dr_0) = \frac{\pi r^4}{2} = \frac{1}{2} A r^2 \qquad \qquad Ans.$$

The polar radius of gyration is

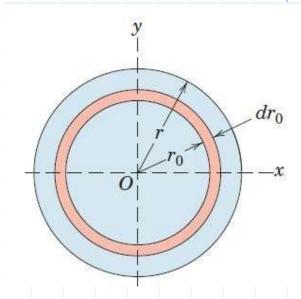
$$\left[k = \sqrt{\frac{I}{A}}\right] \qquad k_z = \frac{r}{\sqrt{2}} \qquad Ans.$$

By symmetry $I_x = I_y$, so that from Eq. A/3

$$[I_z = I_x + I_y]$$
 $I_x = \frac{1}{2}I_z = \frac{\pi r^4}{4} = \frac{1}{4}Ar^2$ Ans.

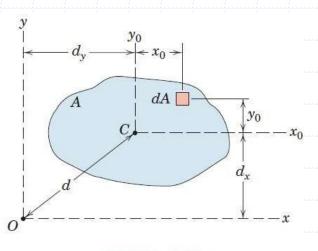
The radius of gyration about the diametral axis is

$$\left[k = \sqrt{\frac{I}{A}}\right] \qquad k_x = \frac{r}{2} \qquad Ans.$$



A/3 Composite Areas

It is frequently necessary to calculate the moment of inertia of an area composed of a number of distinct parts of simple and calculable geometric shape. Because a moment of inertia is the integral or sum of the products of distance squared times element of area, it follows that the moment of inertia of a positive area is always a positive quantity. The moment of inertia of a composite area about a particular axis is therefore simply the sum of the moments of inertia of its component parts about the same axis. It is often convenient to regard a composite area as being composed of positive and negative parts. We may then treat the moment of inertia of a negative area as a negative quantity.



For such an area in the x-y plane, for example, and with the notation of Fig. A/4, where \bar{I}_x is the same as I_{x_0} and \bar{I}_y is the same as I_{y_0} the tabulation would include

Part	Area, A	d_x	d_{y}	Ad_x^2	Ad_y^2	\overline{I}_x	\bar{I}_y
Sums	ΣΑ	is a	22	$\Sigma A d_x^2$	ΣAd_y^2	$\Sigma \overline{I}_x$	$\Sigma \overline{I}_y$

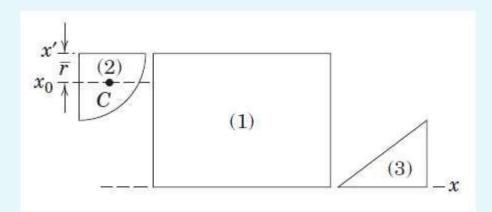
From the sums of the four columns, then, the moments of inertia for the composite area about the *x*- and *y*-axes become

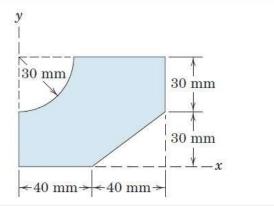
$$I_{x} = \Sigma \overline{I}_{x} + \Sigma A d_{x}^{2}$$
$$I_{y} = \Sigma \overline{I}_{y} + \Sigma A d_{y}^{2}$$

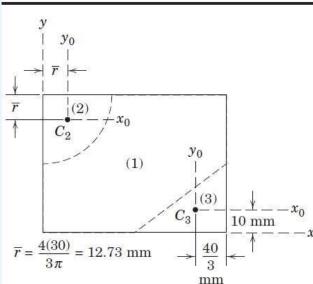
Determine the moments of inertia about the x- and y-axes for the shaded area. Make direct use of the expressions given in Table D/3 for the centroidal moments of inertia of the constituent parts.

Solution. The given area is subdivided into the three subareas shown—a rectangular (1), a quarter-circular (2), and a triangular (3) area. Two of the subareas are "holes" with negative areas. Centroidal x_0-y_0 axes are shown for areas (2) and (3), and the locations of centroids C_2 and C_3 are from Table D/3.

The following table will facilitate the calculations.







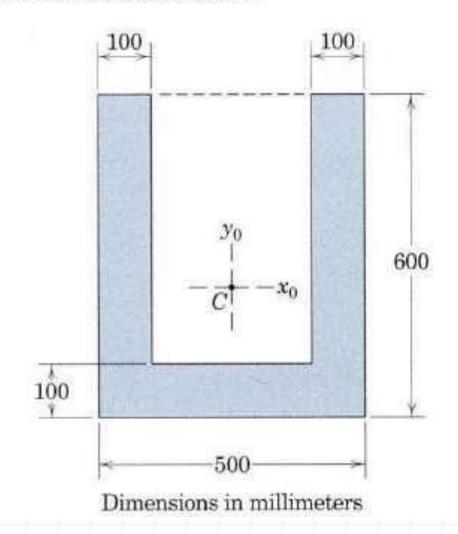
PART	$rac{A}{ m mm^2}$	$d_x \ ext{mm}$	$d_{ m y} \ m mm$	Ad_x^2 mm ³	$Ad_y^2 \ \mathrm{mm}^3$	$ar{I}_x \ \mathrm{mm}^4$	$ar{I}_{ m y} \ { m mm}^4$
1	80(60)	30	40	4.32(10 ⁶)	$7.68(10^6)$	$\frac{1}{12}(80)(60)^3$	$\frac{1}{12}(60)(80)^3$
2	$-\frac{1}{4}\pi(30)^2$	(60 – 12.73)	12.73	$-1.579(10^6)$	$-0.1146(10^6)$	$-\left(\frac{\pi}{16} - \frac{4}{9\pi}\right)30^4$	$-\left(\frac{\pi}{16}-\frac{4}{9\pi}\right)30^4$
3	$-\frac{1}{2}(40)(30)$	$\frac{30}{3}$	$\left(80-\frac{40}{3}\right)$	$-0.06(10^6)$	$-2.67(10^6)$	$-\frac{1}{36}40(30)^3$	$-\frac{1}{36} (30)(40)^3$
TOTALS	3490			$2.68(10^6)$	$4.90(10^6)$	$1.366(10^6)$	$2.46(10^6)$
$[I_x = \Sigma \overline{I}_x +$	$-\Sigma Ad_x^2$] I_x	$= 1.366(10^6) +$	$-2.68(10^6) =$	4.05(10 ⁶) mm ⁴	Ans.		
$[I_y = \Sigma \overline{I}_y +$	$\Sigma A d_y^2$] I_y	$= 2.46(10^6) +$	$4.90(10^6) = 7$	7.36(10 ⁶) mm ⁴	Ans.		

The net area of the figure is $A=60(80)-\frac{1}{4}\pi(30)^2-\frac{1}{2}(40)(30)=3490~\rm mm^2$ so that the radius of gyration about the x-axis is

$$k_x = \sqrt{I_x/A} = \sqrt{4.05(10^6)/3490} = 34.0 \text{ mm}$$

Ans.

A/50 Calculate the polar radius of gyration of the shaded area about its centroid C.



$$\frac{A/50}{Y} = \frac{XAy}{XA}$$

$$= \frac{2[(100)(500)(250)] + 500(100)(-50)}{2(100)(500)} + 100(500)} = 500$$

$$= 150 \text{ mm}$$

$$A = 2(100)(500) + 100(500)$$

$$= 15(10^{4}) \text{ mm}^{2}$$

$$= 15(10^{4}) \text{ mm}^{2}$$

$$= 30.8 (10^{8}) \text{ mm}^{4}$$

$$Ty_{0} = 2[\frac{1}{2}(500)(100)^{3} + 100(500)(150+50)^{2}] = 40.8(10^{8}) \text{ mm}^{4}$$

$$Ty_{0} = 12(500)(100)^{3} + 100(500)(50+150)^{2} = 20.4(10^{8}) \text{ mm}^{4}$$

$$Ty_{0} = 12(100)(500)^{3} = 10.42(10^{8}) \text{ mm}^{4}$$

$$Ty_{0} = 51.2(10^{8}) \text{ mm}^{4}$$

$$Ty_{0} = 51.2(10^{8}) \text{ mm}^{4}$$

$$T_{0} = T_{0} + T_{0} = 102.5(10^{8}) \text{ mm}^{4}$$

$$T_{0} = 7^{2}(A) = \sqrt{\frac{102.5(10^{8})}{15(10^{4})}} = 261 \text{ mm}$$

TABLE D/3 PROPERTIES OF PLANE FIGURES

FIGURE	CENTROID	AREA MOMENTS OF INERTIA
Arc Segment $\alpha \overline{r} C$	$\overline{r} = \frac{r \sin \alpha}{\alpha}$	
Quarter and Semicircular Arcs $ C \bullet \qquad $	$\overline{y} = \frac{2r}{\pi}$	
Circular Area	_	$I_x = I_y = \frac{\pi r^4}{4}$ $I_z = \frac{\pi r^4}{2}$

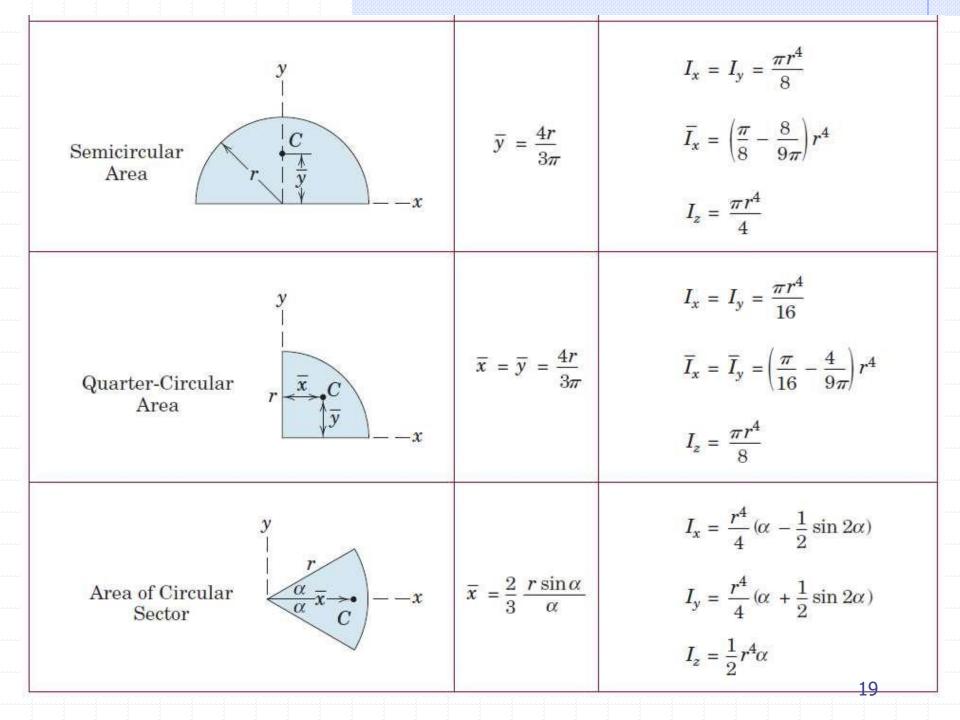
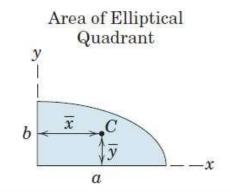


TABLE D/3 PROPERTIES OF PLANE FIGURES Continued

FIGURE	CENTROID	AREA MOMENTS OF INERTIA
Rectangular Area $ \begin{array}{c c} & y_0 \\ \hline & C \\ \hline & -x_0 \\ \hline & -x_0 \end{array} $		$I_x = \frac{bh^3}{3}$ $\bar{I}_x = \frac{bh^3}{12}$ $\bar{I}_z = \frac{bh}{12}(b^2 + h^2)$
Triangular Area $ \begin{array}{c c} & x_1 \\ \hline & \overline{x} & C \\ \hline & \overline{y} \\ \hline & b \\ \hline \end{array} $	$\overline{x} = \frac{a+b}{3}$ $\overline{y} = \frac{h}{3}$	$I_x = \frac{bh^3}{12}$ $\bar{I}_x = \frac{bh^3}{36}$ $I_{x_1} = \frac{bh^3}{4}$



$$\overline{x} = \frac{4a}{3\pi}$$

$$\overline{y} = \frac{4b}{3\pi}$$

$$I_x = \frac{\pi a b^3}{16}, \ \overline{I}_x = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) a b^3$$

$$I_{y} = \frac{\pi a^{3}b}{16}, \ \overline{I}_{y} = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right)a^{3}b$$

$$I_z = \frac{\pi ab}{16}(a^2+b^2)$$

Subparabolic Area

Area
$$A = \frac{ab}{3}$$

$$\overline{x}$$

$$\overline{y}$$

$$\overline{x}$$

$$\overline{y}$$

$$\overline{x}$$

$$\overline{y}$$

$$\bar{x} = \frac{3a}{4}$$

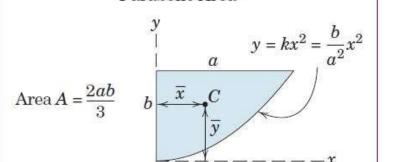
$$\overline{y} = \frac{3b}{10}$$

$$I_x = \frac{ab^3}{21}$$

$$I_y = \frac{a^3b}{5}$$

$$I_z = ab\left(\frac{a^3}{5} + \frac{b^2}{21}\right)$$

Parabolic Area



$$\bar{x} = \frac{3a}{8}$$

$$\bar{y} = \frac{3b}{5}$$

$$I_x = \frac{2ab^3}{7}$$

$$I_y = \frac{2a^3b}{15}$$

$$I_z = 2ab\left(\frac{a^2}{15} + \frac{b^2}{7}\right)$$