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Rectangular and Polar Moments of Inertia

Consider the area A in the x-y plane, Fig. A/2. The moments of iner-
tia of the element dA about the x- and y-axes are, by definition, dI, =
y? dA and dI, = x* dA, respectively. The moments of inertia of A about

the same axes are therefore

Ix=fy2dA
(A/1)
Iy=Jx2dA

Figure A/2




The moment of inertia of dA about the pole O (z-axis) is, by similar
definition, dI, = r* dA. The moment of inertia of the entire area about
VA .

O is

g=fﬂdA (A/2)

The expressions defined by Eqgs. A/1 are called rectangular moments of
inertia, whereas the expression of Eq. A/2 is called the polar moment of
inertia.* Because x? + y? = 2, it is clear that

L=1 31 (A/3)

For an area whose boundaries are more simply described in rectangular
coordinates than in polar coordinates, its polar moment of inertia is eas-
ily calculated with the aid of Eq. A/3.




Radius of Gyration

Consider an area A, Fig. A/3a, which has rectangular moments of
inertia I, and [, and a polar moment of inertia I, about O. We now visu-
alize this area as concentrated into a long narrow strip of area A a dis-
tance &, from the x-axis, Fig. A/3b. By definition the moment of inertia
of the strip about the x-axis will be the same as that of the original area
if £, 2A = I,. The distance £k, is called the radius of gyration of the area
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Figure A/3




about the x-axis. A similar relation for the y-axis is written by consider-
ing the area as concentrated into a narrow strip parallel to the y-axis as

_-shown in Fig. A/3c. Also, if we visualize the area as concentrated into a
narrow ring of radius £, as shown in Fig. A/3d, we may express the polar
moment of inertia as k,2A = I,. In summary we write

IL=F%2A b= TR
I, = ky2A or k, = L /A (A/4)
I.=E2A b, = JLJA

The radius of gyration, then, is a measure of the distribution of the area
from the axis in question. A rectangular or polar moment of inertia may
be expressed by specifying the radius of gyration and the area.

When we substitute Eqs. A/4 into Eq. A/3, we have

k2=k2+k? (A/5)




Transfer of Axes

The moment of inertia of an area about a noncentroidal axis may be
easily expressed in terms of the moment of inertia about a parallel cen-
troidal axis. In Fig. A/4 the xy-y, axes pass through the centroid C of the

“area. Let us now determine the moments of inertia of the area about the

Figure A/4
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parallel x-y axes. By definition, the moment of inertia of the element dA
about the x-axis is

dI. = (y, + d )% dA
Expanding and integrating give us
Ix=fy02dA+2dxfy0dA+dx2JdA

We see that the first integral is by definition the moment of inertia I,
about the centroidal xy-axis. The second integral is zero, since [ yg dA =
Ay, and y, is automatically zero with the centroid on the x,-axis. The
third term is simply Ad, 2 Thus, the expression for I, and the similar ex-
pression for I, become

L] tAd”?
I,=1 + AdJ2 i
5 4 Yy Y

By Eq. A/3 the sum of these two equations gives

I =1 + Ad? (A/6a%




SAMPLE PROBLEM A/1

Determine the moments of inertia of the rectangular area about the cen-
troidal xo- and yg-axes, the centroidal polar axis z; through C, the x-axis, and the
polar axis z through O.

Solution. For the calculation of the moment of inertia jx about the xjp-axis, a
horizontal strip of area b dy is chosen so that all elements of the strip have the
same y-coordinate. Thus,

hi2
= f 2 dA] T~ f oy =bh? s
—h/2 12

By interchange of symbols, the moment of inertia about the centroidal yy-axis is

1, = 5hb® Ans.
The centroidal polar moment of inertia is
T _7 7 = 1 _ 1
=L +L] I, = Ti(bhg + hb?) = —ﬁA(b2 + h?) Ans.
By the parallel-axis theorem the moment of inertia about the x-axis is
L-L+Ad?  IL=Loh3+ bh(ﬁ)2 —1pps_1pp2 Ans
x X x x 12 2 3 3 2

We also obtain the polar moment of inertia about O by the parallel-axis theorem,
which gives us

I -1 +Ad> L=Lae2+ny+al(2) ()

I, = 3A®? + h?) Ans.
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Helpful Hint

@ [f we had started with the second-
order element dA = dx dy. integra-
tion with respect to x holding y
constant amounts simply to multi-
plication hy & and gives us the ex-

: g :
pression y“b dy, which we chose at
the outset.
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SAMPLE PROBLEM A/2

Determine the moments of inertia of the triangular area about its base and
about parallel axes through its centroid and vertex.

Solution. A strip of area parallel to the base is selected as shown in the figure,
and it has the areadA = x dy = [(h — y)b/h] dy. By definition

B p— ¥ oyt s
- — 2— — — — | — = —
(L, f y?dA] L fo Y bdy=1> [ 3 4h]0 19 Ans.

By the parallel-axis theorem the moment of inertia I about an axis through the
centroid, a distance h/3 above the x-axis, is

T—1—Ad? —=b_if'_(%(£2=b_ha

[I =1—- Ad?] I 19 5 \3 36 Ans.

A transfer from the centroidal axis to the x'-axis through the vertex gives
_T+Ad _bh? (9@)(%) _ b

[I =1+ Ad?] L. 36 + 7 \3 4 Ans.

Helpful Hints

@ Here again we choose the simplest
possible element. If we had chosen
dA = dx dy, we would have to inte-
grate y® dx dy with respect to x first.
This gives us y*x dy, which is the ex-
pression we chose at the outset.

Expressing x in terms of y should
cause no difficulty if we observe the
proportional
the similar triangles.

relationship between
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SAMPLE PROBLEM A/3

Calculate the moments of inertia of the area of a circle about a diametral
axis and about the polar axis through the center. Specify the radii of gyration.

Solution. A differential element of area in the form of a circular ring may be

€@ used for the calculation of the moment of inertia about the polar z-axis through
O since all elements of the ring are equidistant from O. The elemental area is
dA = 271y dry, and thus,

" 4
[Iz = f r2 dA] Iz = fo 7'02(27rr0 dro) _ % _ %A,ﬂ Ans.

The polar radius of gyration is

[k= \/%] k, = Jr’z‘ Ans.

By symmetry I, = I, so that from Eq. A/3

4
IL=1,+1) L=3L = = A2 Ans.

The radius of gyration about the diametral axis is

-]

Ans.

N~
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A/3 Composite Areas

It is frequently necessary to calculate the moment of inertia of an

g, area composed of a number of distinct parts of simple and calculable
geometric shape. Because a moment of inertia is the integral or sum of
the products of distance squared times element of area, it follows that
the moment of inertia of a positive area is always a positive quantity.
The moment of inertia of a composite area about a particular axis is
therefore simply the sum of the moments of inertia of its component
parts about the same axis. It is often convenient to regard a composite
area as being composed of positive and negative parts. We may then
treat the moment of inertia of a negative area as a negative quantity.

12
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For such an area in the x-y plane, for example, and with the nota-
7tion of Fig. A/4, where I, is the same as I, and I, is the same as | the
tabulation would include

Part Area,A | d, | d, | Ad? Ad? L L
Sums YA YAd,? | XAd2? | ZI, | 3,

From the sums of the four columns, then, the moments of inertia
for the composite area about the x- and y-axes become

>I. + YAd 2

L,
Iy ZI.V W ZAdyz
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SAMPLE PROBLEM A/7

Determine the moments of inertia about the x- and y-axes for the shaded
area. Make direct use of the expressions given in Table D/3 for the centroidal
moments of inertia of the constituent parts.

Solution. The given area is subdivided into the three subareas shown—a rec-
tangular (1), a quarter-circular (2), and a triangular (3) area. Two of the sub-
areas are “holes” with negative areas. Centroidal x,—y, axes are shown for areas
(2) and (3), and the locations of centroids Cy and C5 are from Table D/3.

The following table will facilitate the calculations.

(1) 1

(3)
—_— —x

14



A d, d Ad,? Ad? 1, 1

PART mm? mm mm mm? mm? mm? mm?
1 80(60) 30 40 4.32(10°) 7.68(106) %(80)(60)3 1—12(60)(80)3
1 2 - . 6 _ 6 (7T _ 4 laps _[ 7T _ 4 )aps
2 77(30) (60 — 12.73) 12.73 1.579(108)  —0.1146(10°) ( 5 97T)30 ( i 977)30
1 30 _ 40} _ 6 = 6 i 3 3 3
3 5(40)(30) 5 (80 > > 0.06(106) 2.67(106) 56 4030) 56 (30(40)
TOTALS 3490 2.68(10°) 4.90(108) 1.366(10°) 2.46(106)
IL,=2I1 +ZAd2] I, = 1.366(10%) + 2.68(10°) = 4.05(10%) mm* Ans.
[I,==I,+2Ad? I, = 2.46(10°) + 4.90(10°) = 7.36(106) mm* Ans.

The net area of the figure 1s A = 60(80) — %77( 30)2 — %(40)(30) = 3490 mm? so
that the radius of gyration about the x-axis is

k.= JIJA = /4.05(10°%)/3490 = 34.0 mm Ans.

15
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-ﬁ@l 00 100

T - 24 - -
Z.CC‘W‘(JOO\(ZSOLSOQ (100)(-59 3.:0
2( loo)(socg + loo(soo) 500 !
= |50 mm ] . Moh f?
A== (loo)(Sou) + 100 (500) 106 5®00
- 15(|o+) mm = (Dim, in mm)

ORT0 Ty= 2[—}1 (lOO)(SOo) + |00 (500)(2.50 |so)J
= 30.8 (Io %) mm *

= 2[ 12 (60o)(100)3 100(500)(‘50f50)J 40.8(10%) mm
@ I s ™ 12(500)000) - DO[SOQ)(5°+ 150) = 20, ‘l‘(k)g) mm+
Tyo = i (uoo)(500)3 = [o.42(10%) m
Totals Q@+ +@ : I,xo*-- 5i.2(l08) mm*
T,, = 512(10%) mm*

) mm*

a

T, =Ty, + Ly, = 102.5(i0
/ - 02,5 (1o -
kC— = IC/H 15 (1% 26l mm
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TABLE D/3 PROPERTIES OF PLANE FIGURES

AREA MOMENTS
FIGURE CENTROID OF INERTIA
r C :
Arc Segment 437—» 7o LM —
£ o
~
~
Quarter and Semicircular Arcs
— o
Y=
i
4
L= Fom 25
X y 4
Circular Area I - art
2

18




Semicircular
Area

37

Quarter-Circular

Area

Area of Circular

Sector

(or— 1 sin 2)
2

(o +1sin2a)
2

1Y
(o]




TABLE D/3 PROPERTIES OF PLANE FIGURES Continued

AREA MOMENTS
FIGURE CENTROID OF INERTIA
Rectangular Area e bh3
s
ylo 3
|
! = Bhe
b = i
h - +C -— %o — Sl T
|
|
——X
T bh
I = ZE(p2 2
b 1 12(b + h*)
bh?
e—G—sg—— %y — _a+b L= ==
X = 12
JI’ _ 3
Triangular Area - 4 = . bR
4 x | =2
| | V=5 :
P ' L =80
. -+

20



Area of Elliptical I = mab® ¥ = (1 _ 4 )ab3
" Quadrant - _4a = de* ¢ \ae
3
I 3
| 1:77'“b,fv=(.7_7.—4—)a3b
= 1 Y16 16 97
X C v = =2
b _ y 377 ab
Y _ L ="22 + b2
= 16
Subparabolic Area P o ab®
x P
y y:kxzz%xz f=3_a 21
| a 4 3b
a
Area A = a_b | Iy : _5—
| = Y =70 3 p2
| (y x I, = ab a—+_
- : = 5 21
Parabolic Area o 2ab>
z =32 !
8
_ 2a°b
AreaA=25%b = 3p ’ 1
: y = —
5 2 12
I - 2ab(a— +b_)
o 15 7
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