Introduction to Manufacturing, AGE-1320 Ahmed M. El-Sherbeeny, PhD Fall-2025

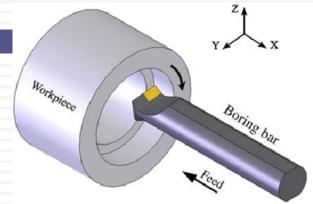
Manufacturing Engineering Technology in SI Units, 6th Edition

Chapter 23:

Machining Processes: Turning and Hole Making

- Part B (Hole Making: Drilling, Boring)

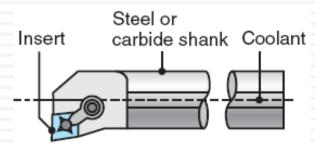
2


- 1. **Boring and Boring Machines**
- 2. Drilling, Drills, and Drilling Machines

Boring and Boring Machines

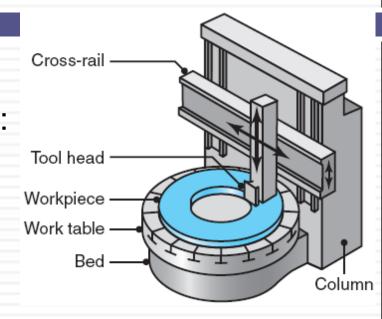
Properties of Boring

- Boring: Enlarges hole made by other process (e.g. turning)
- Cutting tools are mounted on a boring bar
- Boring bars:
 - Used to reach full length of bore
 - Must be stiff to minimize tool deflection, vibration, and maintain dimen. acc.
 - ⇒ better to use material with high elastic modulus (e.g. WC)



Basic operation

Boring with cutting fluid



Steel boring bar with carbide insert (note passageway in bar for cutting fluid)

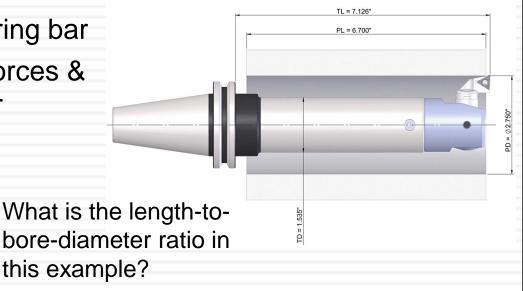
Boring and Boring Machines

Boring Machines

- Boring operations carried out on:
 - Lathes for small workpieces
 - Boring mills for large workpieces
- Boring mills
 - Either horizontal or vertical
 - Capable of performing different operations (e.g. turning, facing, chamfering)

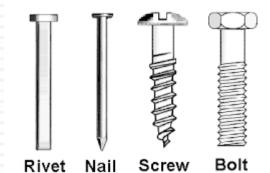
Vertical boring mill (workpiece diameters: up to 2.5 m)

Cutting tool:


- Usually single point (HSS or carbide) mounted on tool head
- Capable of movements: vertical (boring and turning), radial (facing, using cross-rail)
- Speeds/feeds: similar to turning

Boring and Boring Machines

Design Considerations for Boring (similar to turning):


- Through holes should be specified (not blind holes)
 - Blind hole: doesn't go through thickness of workpiece

- $exttt{ iny Greater the length-to-bore-diameter ratio} <math>\Rightarrow$
 - More difficult it is to hold dimensions
 - More deflections of boring bar
 - This is due to cutting forces & higher vibration/chatter

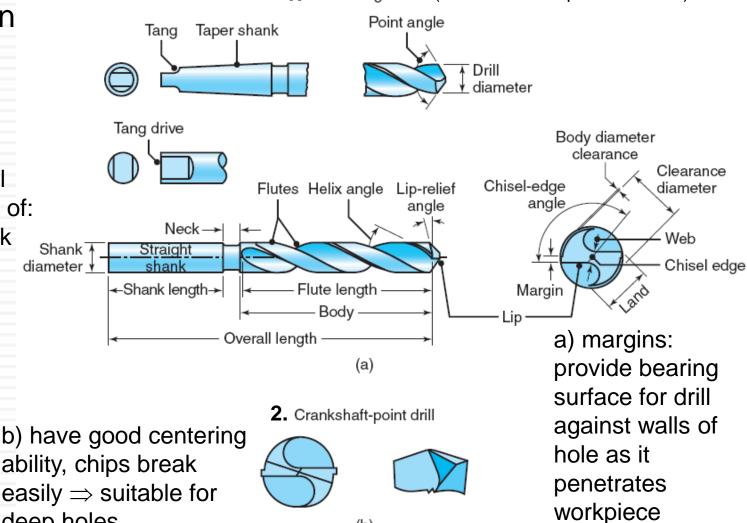
- Most products have many holes in them
 - e.g. for rivets on plane wings
 - e.g. for bolts in engine blocks
- Holes used for:
 - assembly with fasteners (e.g. screws, bolts, rivets)
 - design purposes (e.g. weight reduction, ventilation)
 - appearance
- Hole making:
 - Among most important operations in manufacturing
 - Drilling is major, common hole-making process
 - Cost is among highest machining costs in car engine prodon

- Drill properties:
 - Have high length-to-diameter ratios (<u>see next slide</u>)
 - Thus, capable of producing deep holes
 - □ Caution: drills are flexible ⇒ should be used with care
 - to drill holes accurately
 - and to prevent breakage

Drilling Marks:

- Drilling burrs

 Drills leave *burr* on bottom surface upon breakthrough
 - ⇒ requires deburring operations
- Rotary motion of drilling
 - ⇒ holes with "circumferential marks" on walls


deburring operation

2 common types of drills

> twist drill consists of:

- Shank
- Neck
- Body
- **Point**

(b)

1. Chisel-edge drill (AKA: standard-point twist drill)

ability, chips break easily \Rightarrow suitable for deep holes

Drill oversize:

- Oversize: fact that Ø of hole > drill Ø (slightly)
- This is visible: easy to remove drill after making hole
- Oversize depends on:
 - Quality of drill
 - Equipment
 - Expansion of metallic/non-metallic material due to drilling heat

Honing

Spindle

operation

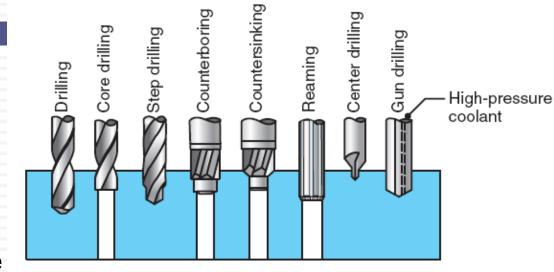
- □ In the end: possible that final hole \emptyset < drill \emptyset
- □ To improve S.F. and dim. acc.:
 - Perform reaming/honing on drilled holes
- Capabilities of drilling/boring: shown on next slide

General Capabilities of Drilling and Boring Operations

		Hole depth/diameter		
Cutting tool	Diameter range (mm)	Typical	Maximum	
Twist drill	0.5-150	8	50	
Spade drill	25-150	30	100	
Gun drill	2-50	100	300	
Trepanning tool	40-250	10	100	
Boring tool	3-1200	5	8	

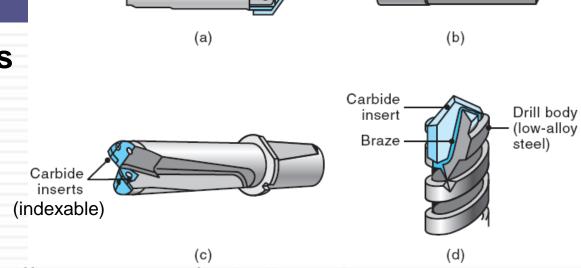
- Note, depth/diameter is a <u>ratio</u> (i.e. unitless)
 - e.g. for twist drill:
 - typical depth @ $100 \, mm \, \emptyset = 8 * 100 \, mm = 800 \, mm$

Twist Drill


- Most common drill: conventional standard-point twist drill
- Geometry of drill point:
 - normal rake angle and V of cutting edge vary with distance from center of drill
- Main features of twist drill (typical angles):
- Point angle
- 2. Lip-relief angle
- Chisel-edge angle
- 4. Helix angle

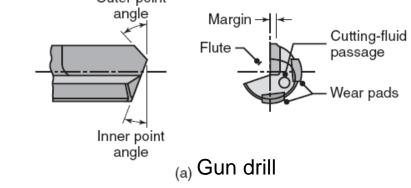
Cont. Twist Drill

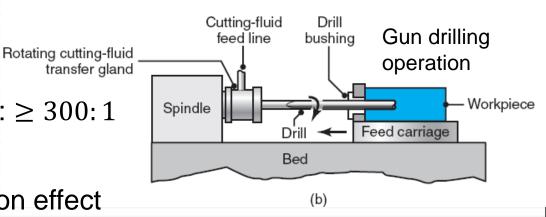
- Grooves in drills:
 - Precision
 Spiral grooves run along length of drill
 Twist Drill
 - Chips: guided through grooves, upward
 - Grooves: also allow cutting fluid to reach cutting edges
 - Some drills have internal longitudinal holes for cutting fluids ⇒ lubrication, cooling, flushing chips
 - Drills have <u>chip-breaker</u> feature ground along cutting edges
- Drill angles (chosen carefully):
 - Produce accurate holes
 - Minimize drilling forces and torque
 - Increase drill life
 - Small change in angles ⇒ great change in performance*


Other Types of Drills

- Step drill:
 - Holes with \geq 2 Ø's
- Core drill:
 - Enlarge existing hole
- Counterboring/countersinking:
 - Make depressions on surfaces to accommodate heads of screws, bolts below workpiece surface
- Center drill:
 - Short; produce hole at end of piece of stock
- Spot drill:
 - Spots (i.e. starts) hole at desired location on a surface

Other Types of Drills

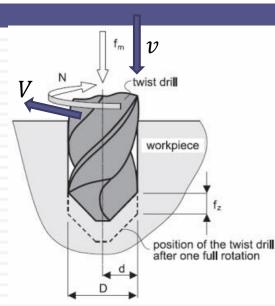

- □ Spade drills (a):
 - Removable bits
 - Large Ø holes
 - Deep holes
 - Advantages: high stiffness, ease of grinding edges, low cost
- Straight-flute drill (b):
 - Similar to spade drill
- Solid carbide (c), carbide-tipped drills* (d) for drilling:
 - Hard materials (e.g. cast irons)
 - High-temp. metals
 - Abrasive (e.g. concrete) and composite materials (e.g. glass)



Gun Drilling

- Name origin "gun"
 - Drilling gun barrels
- Features:
 - Drilling deep holes
 - Hole depth-to- \emptyset ratio: $\ge 300:1$
- Cutting fluid
 - Cooling and lubrication effect
 - Forced under high pressure through passage in drill body
 - Also: flushes out chips that could be trapped in deep holes

 - □ ⇒ no need to retract tool to clear chips (i.e. unlike twist drills)



Drilling, Drills, and Drilling Machines: Material-removal Rate in Drilling

- Material-removal rate (MRR) in drilling:
 - Volume of material removed per unit time*
- Drill diameter: D
- \Box C.S.A. of drilled hole: $\pi D^2/4$ [mm^2]
- □ Velocity of drill (⊥ to workpiece):
 - v = fN
 - f, feed: dist. drill penetrates/unit rev [mm/rev]
 - N: rotational speed [rev/min], where $N = V/\pi D \Rightarrow$

$$MRR = C.S.A * v = \left(\frac{\pi D^2}{4}\right) \cdot fN$$

• Check dimensions: $MRR = (mm^2)(mm/rev)(rev/min)$ = mm^3/min (which are units of volume / unit time)

Drilling, Drills, and Drilling Machines: Material-removal Rate

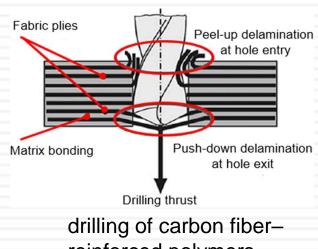
EXAMPLE 23.4

Material-removal Rate in Drilling

A hole is being drilled in a block of magnesium alloy with a 10 - mm drill bit at a feed of $0.2 \ mm/rev$ and with the spindle running at $N = 800 \ rpm$. Calculate the material-removal rate.

Drilling, Drills, and Drilling Machines: Material-removal Rate

Solution


Material-removal Rate in Drilling

The material-removal rate is

$$MMR = \left(\frac{\pi (10)^2}{4}\right)(0.2)(800) = 12,570 \,\text{mm}^3 / \text{min} = 210 \,\text{mm}^3 / \text{s}$$

Drilling, Drills, and Drilling Machines: Drill Materials and Sizes

- **Drill materials:**
 - Usually made from HSS
 - Also solid carbides or with carbide tips
- Drills commonly coated with:
 - TiN or TiCN* for increased wear resistance
- Polycrystalline-diamond-coated drills:
 - Used to make fastener holes
 - Used with fiber-reinforced plastics
 - Have high wear resistance
 - 1000's of holes can be drilled with little damage to drill material

reinforced polymers

Drilling, Drills, and Drilling Machines: Drill Materials and Sizes

Standard twist-drill sizes consist of following series:

1. Numerical

No. 97 (0.0059 in. - 0.15 mm) to No. 1 (0.228 in. - 5.79 mm)

2. Letter

 \triangle A (0.234 in. -5.94 mm) to Z (0.413 in. -10.49 mm)

3. Fractional

- Straight shank: from $\frac{1}{64} 1\frac{1}{4}in$. (in $\frac{1}{64} in$. increments) to $1\frac{1}{2}in$. (in $\frac{1}{32} in$. increments)*
- Taper shank: $\frac{1}{8} 1\frac{3}{4}$ in. (in $\frac{1}{64}$ in. Δ's) to 3.5 in. (in $\frac{1}{16}$ in. Δ's)

4. Millimeter

■ From 0.05 mm (0.002 in.) in 0.01 mm $\Delta's$

- Drill chucks:
 - Used to hold drills (and similar hole-making tools)
 - Tightened with/without keys
 - Special chucks
 - Have quick change features
 - Do not require stopping the spindle
 - Available for use in production machinery
- Lateral deflection of drill:
 - Drills do not have a centering action
 - ⇒ tend to "walk" on workpiece surface at start of operation
 - Problem severe with small-D long drills, may lead to failure

1/32"- 5/8" Heavy duty drill chuck

- Avoiding lateral deflection of drill (at start of drill):
 - 1. Guide drill using fixtures
 - Use <u>center drill</u> to make small starting hole before drilling
 - Usually @ 60° point angle
 - Grind drill point to an S shape (important with CNC machines)
 - Use centering punch ⇒ produces initial impression
 - 5. Add <u>dimples</u> (or other features) in cast or forged blank

drill fixture

Drilling Recommendations

- Speed:
 - \blacksquare Recommended ranges for V and f shown in table (<u>next slide</u>)
 - Speed here is surface speed, V, of drill at its periphery
 - Example:

12.7 mm drill, rotating at 300 rpm^* , has a surface speed of:

$$V = \pi DN$$

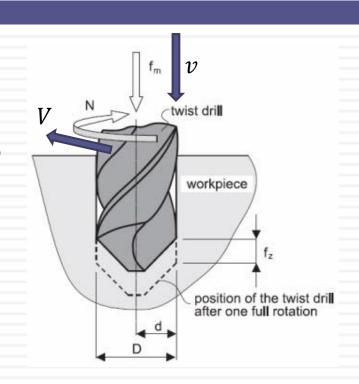
$$= \left(\frac{12.7}{2} \, mm\right) (300 \, rev/min) (2\pi \, rad/rev) \left(\frac{1}{1000} \, m/mm\right)$$

- = 12 m/min
- Note how surface speed, V (πDN) is different than drill velocity, v ($f \cdot N$)
- □ Drilling holes < 1 mm (in diameter):
 - N can be up to 30,000 rpm (depending on workpiece material)

Drilling Recommendations

General Recommendations for Speeds and Feeds in Drilling

		Drill diameter			
		Feed, mm/rev		Speed, rpm	
	Surface speed	1.5 mm	12.5 mm	1.5 mm	12.5 mm
Workpiece material	m/min				
Aluminum alloys	30-120	0.025	0.30	6400-25,000	800-3000
Magnesium alloys	45-120	0.025	0.30	9600-25,000	1100-3000
Copper alloys	15-60	0.025	0.25	3200-12,000	400-1500
Steels	20-30	0.025	0.30	4300-6400	500-800
Stainless steels	10-20	0.025	0.18	2100-4300	250-500
Titanium alloys	6–20	0.010	0.15	1300-4300	150-500
Cast irons	20-60	0.025	0.30	4300-12,000	500-1500
Thermoplastics	30–60	0.025	0.13	6400-12,000	800-1500
Thermosets	20-60	0.025	0.10	4300–12,000	500-1500


Note: As hole depth increases, speeds and feeds should be reduced. The selection of speeds and feeds also depends on the specific surface finish required.

Drilling Recommendations

- Feed:
 - Feed in drilling: dist. drill travels into workpiece per revolution
 - Recommendation: for most workpiece <u>materials</u>: drills with D = 1.5 mm should have f = 0.025 mm/rev
 - Example:

A 1.5 mm - D drill rotating at 2,000 rpm, has linear speed of:

$$v = f * N$$

= $(0.025 mm/rev)(2000 rev/min)$
= $50 mm/min$

Drilling Recommendations

- Chip removal during drilling:
 - Can be difficult
 - Especially: deep holes in soft and ductile workpiece materials
 - To avoid this:
 - Retract drill periodically ("pecking"), then:
 - Removing chips accumulated along drill flutes
 - Otherwise: drill may break due to high Torque (T), or
 - peck Drilling "walk-off" location and produce mis-shaped hole

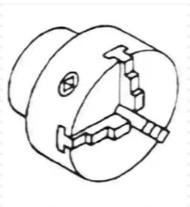
Drilling Recommendations

General Troubleshooting Guide for Drilling Operations

Problem	Probable causes		
Drill breakage	Dull drill, drill seizing in hole because of chips clogging flutes,		
	feed too high, lip relief angle too small		
Excessive drill wear	Cutting speed too high, ineffective cutting fluid, rake angle too		
	high, drill burned and strength lost when drill was sharpened		
Tapered hole	Drill misaligned or bent, lips not equal, web not central		
Oversize hole	Same as previous entry, machine spindle loose, chisel edge not		
	central, side force on workpiece		
Poor hole surface finish	Dull drill, ineffective cutting fluid, welding of workpiece material on drill margin, improperly ground drill, improper alignment		

Drill Reconditioning

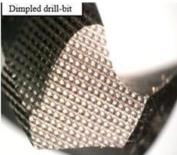
- Drills reconditioned by grinding, either:
 - Manually (i.e. by hand), or
 - With special fixtures
- Hand grinding:
 - Difficult
 - Requires considerable skill to produce symmetric cutting edges
- Grinding on fixtures:
 - Accurate
 - Done on special computer controlled grinders
- Coated drills can be recoated



Measuring Drill Life

- Drill life measured by no. of holes drilled:
 - Before they become dull, and
 - Need to be re-worked or replaced
- Determining drill life experimentally:
 - Use a device called dynamometer/force transducer
 - With more holes, tool becomes dull
 - \Rightarrow dynamometer records high $T \& F_t$
 - Drill life here is: no. of holes drilled until this transition begins
- Other techniques to measure drill life:
 - Monitoring vibrations and acoustic emissions (Ch. 21: tool life)

- Workholding devices:
 - Ensure workpiece is located properly
 - Keep workpiece from slipping or rotating during drilling
 - Available in various designs
 - Important features:
 - 3-point locating (for accuracy)
 - 3-D workholding for secure fixtures



Three Jaw Chuck

Drilling, Drills, and Drilling Machines: Design Considerations for Drilling

- Basic design guidelines for drilling:
 - Designs should allow holes to be drilled
 - On flat surfaces and ⊥ to drill motion
 - Otherwise: drills deflect and hole will not be located properly
 - Interrupted hole surfaces should be avoided
 - This ensures: dim. acc., longer drill life, avoids vibrations
 - 3. Hole bottoms should match standard drill-point angles
 - 4. Through holes are preferred over blind holes
 - 5. Dimples should be provided:
 - When pre-existing holes not possible, to reduce drill "walk-off"
 - Parts should be designed to drill with minimum of fixturing

