
Polymorphism

1

What Is Polymorphism?
Polymorphism allows a single variable to refer to objects

from different subclasses in the same inheritance
hierarchy

• B o = new A(); // Will compile iif :
• A is a subclass of B

• A is a concrete Class

• For example, if Circle and Rectangle are subclasses of
Shape, then the following statements are valid:

• Shape s1,s2;

• Rectangle r = new Rectangle(5,2);

• Circle c = new Circle(3);

• s1 = r; s2 = c;

• Shape s3 = new Rectangle(6,4);

CSC113-Polymorphism-2

Application Design Using Polymorphism

• There are three design steps required for
polymorphism:
– create representative base classes:

• could create an Employee class to represent the
general behavior of the Employee class family.

– create specialized subclasses:
• Implement the specialization specific to this class by

overriding the required methods. classes such as
Manager and Contractor could be created for the
Employee class family.

CSC113-Polymorphism-3

Application Design Using Polymorphism

– use the base class type as reference variables:

• use variables of type Employee to operate on objects of
type Employee, Manager, or Contractor. This can be
justified by recalling that a Manager object has all the
attributes, both member variables and methods, of the
parent class Employee.

• any operation that is legitimate on an Employee object
is also legitimate on a Manager object. If the Employee
object has methods raiseSalary and fire, then the
Manager class does also.

CSC113-Polymorphism-4

public class Employee

public class Manager extends Employee

public class Contractor extends Employee

• We can maintain our class Employee using
an array, combining objects from the
Employee, Manager and Contractor classes.

CSC113-Polymorphism-5

Creating the staff Array

• Employee [] staff = new Employee[80];
staff[0] = new Manager();
staff[1] = new Employee(); // Employee is a concrete class
staff[2] = new Contractor();
// and so on

• Using the polymorphic features, we can then perform
the following:
– // In the Employee class

public TaxRate findTaxRate(Employee e) {
double sal = e.getSalary();
// e could actually be a Manager object
if (sal > x) { }

CSC113-Polymorphism-6

Using the instanceof Operator
public void static main (String[] args) {

int empCount, mgrCount, contCount;
empCount = mgrCount= contCount = 0;

Employee staff[] = new Emplyee[80];
…

for (int i=0; i < stuff.length; i++) {

if (staff[i] instanceof Manager)
mgrCount++;

else if (staff[i] instanceof Contractor)
contCount++;

else

empCount++;

}
…

}

CSC113-Polymorphism-7

Casting an Object to its Subclass Form

• Consider the following line of code:

Employee e = new Manager();

• Using the variable e as is, we can access only
the parts of the object that are part of an
Employee object;

• the parts specific to a Manager object are
hidden.

• Access is limited because, as far as the compiler
is concerned, the variable e is an Employee
object, not a Manager object. Therefore, the
following is not allowed:

e.department = "Finance";

CSC113-Polymorphism-8

• The workaround for this would be to use a
variable of type Manager and assign the
object to it by casting:
Manager m = (Manager) e; // cast
m.department = "Finance";

• Or we could cast with just one line of code:
((Manager) e).department = "Finance";

• The cast will fail at runtime if e does not
refer to a Manager object.

• Before performing the cast, we should use
the instanceof operator to test if e is
referring to a Manager object.

CSC113-Polymorphism-9

Casting an Object to its Subclass Form

public class Employee {
public class Manager extends Employee {

private String name;
private String department;
...
private String jobTitle;

}
...

}
public void method(Employee e) {

if (e instanceof Manager) {
Manager m = (Manager) e;
System.out.println("Casting object as a manager");
m.department = "Finance";

}
// rest of operation

}

CSC113-Polymorphism-10

Polymorphic cases

X is a methodX is an attribute

Specific

Overriden

SpecificInherited

Overloaded Non Overloaded

inherited

Non Overriden

// a cast has to be done

((SubClass) bs).x…;

Or

sc = (SubClass) bc;

….sc.x…;

BaseClass bc;

Subclass sc ;

….

//accessing x according

//to the modifer

….bc.x …;

x

Dynamic binding case Normal call // a cast has to be done

((SubClass) bs).x(...)

Or

sc = (SubClass) bc;

...sc.x(...);

Normal access

CSC113-Polymorphism-11

Interface
• An interface is a reference data type

• An interface includes only constants and methods
headers (all public)

• An interface does not have instances

• An interface can inherit from other interfaces

• A class must implement an interface

• A class implements an interface if it provides the
method body to all abstract methods defined in
the interface

CSC113-Polymorphism-12

Example

public interface A {
public void x();
public double y();

}
public class B implements A {

public void x(){
//Implement the body of x

}
public double y(){

//Implements the body of y

}

}

CSC113-Polymorphism-13

public interface Shape {

public double getArea();

public double getVolume();

public String getName();
}

public class Point extends Object implements Shape {
private int x;
private int y;
public Point() {

// implicit call to Object constructor occurs here
}
public Point(int xValue, int yValue) {

x = xValue;

y = yValue;

}
public void setX(int xValue) {

x = xValue;

}
....

}
CSC113-Polymorphism-14

