Chapter 4 – Kinematics of Rigid Bodies

- 1. Translation
- 2. Rotation about a fixed axis
- 3. General plane motion

Prepared by: Ahmed M. El-Sherbeeny, PhD – Fall 2025

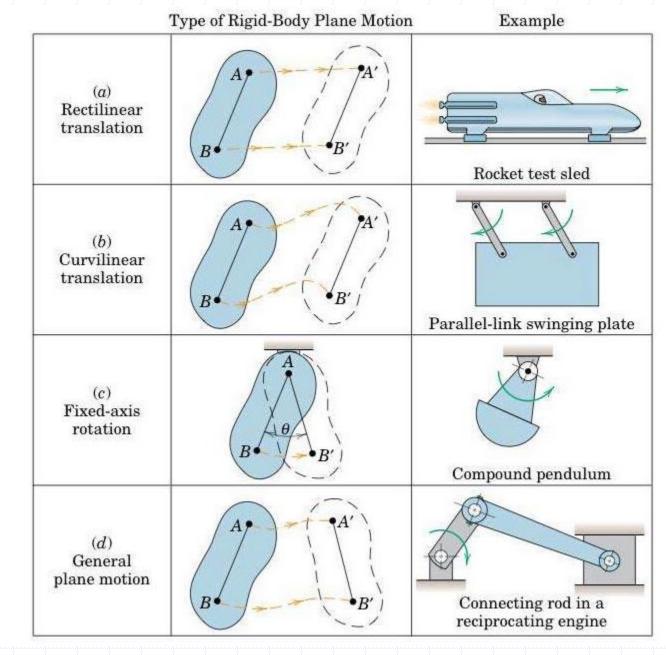
11/29/2025

Kinematics of Rigid Bodies

Relates the motions of various particles forming a rigid body w/o ref. to forces causing the motion.

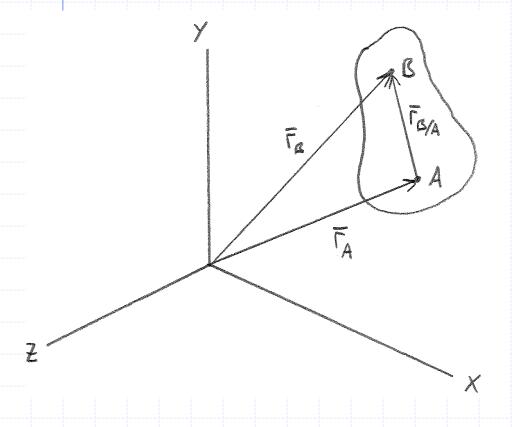
Types of Motion:

- 1 Translation
- 1 Rotation about a fixed axis
- 3 General Plane motion



1. Translation

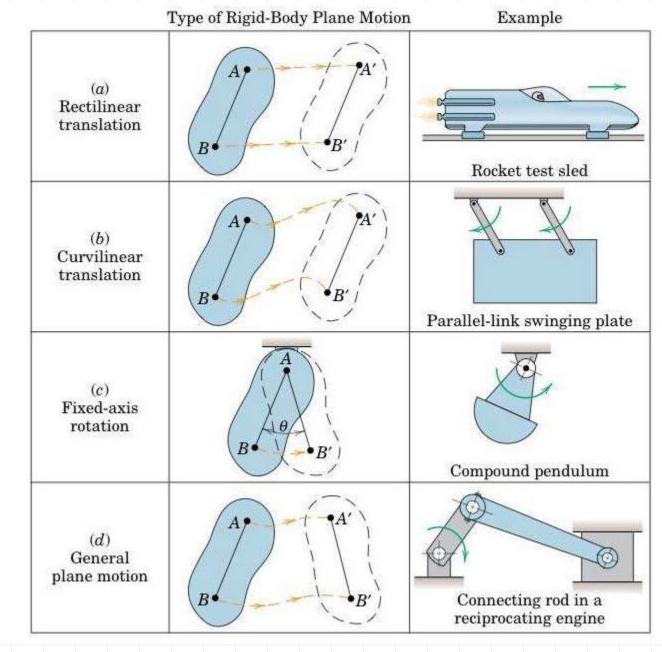
Translation



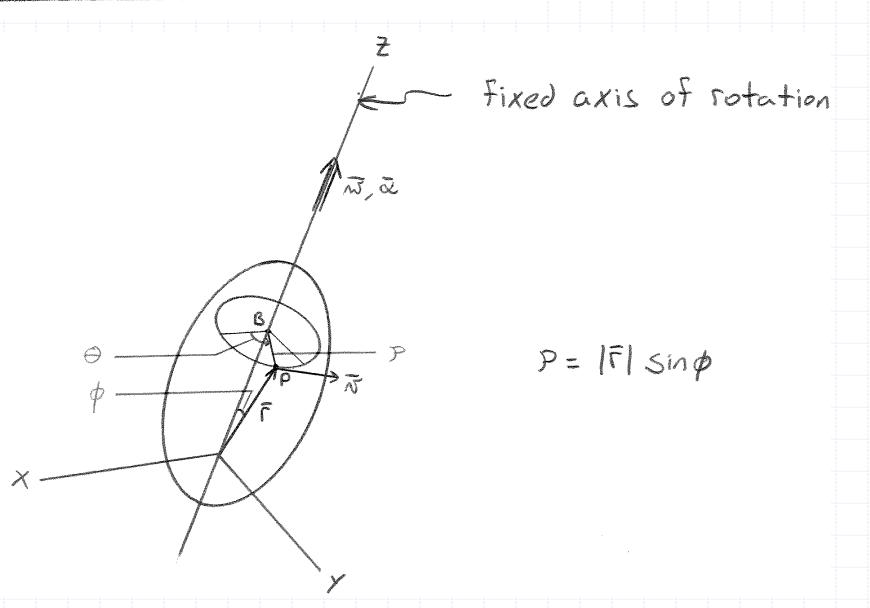
$$\overline{\Gamma}_{B} = \overline{\Gamma}_{A} + \overline{\Gamma}_{B/A}$$
Const. in mag. $\frac{2}{3}$ dif.

$$\Rightarrow$$
 $\sqrt{s} = \sqrt{s}$

2. Rotation about a fixed axis



Rotation about a Fixed Axis

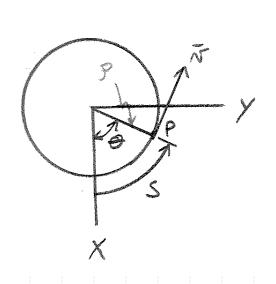


angulat vel.

$$\alpha = \frac{\omega}{H}$$

angular acc.

Top View:



$$|\vec{w}| = |\vec{w}||\vec{r}| \leq |\vec{w}|$$

$$|\vec{w}| = |\vec{r}||\vec{w}|$$
by definition

$$\Rightarrow$$
 $|\vec{x}| = |\vec{x} \times \vec{r}| = |\vec{r} \times \vec{x}|$

- magnitude of 15

For appropriate direction, must have

$$\bar{\alpha} = \mathcal{Z}_{X\bar{x}} = \mathcal{Z}_{X\bar{x}} = \mathcal{Z}_{X\bar{x}} = \bar{\alpha}_{X\bar{x}}$$

$$\bar{a} = \bar{\alpha} \times \bar{r} + \bar{\omega} \times (\bar{\omega} \times \bar{r})$$

Here,
$$\bar{a}_t = \bar{\alpha}_{x\bar{r}} = + anyential acc.$$

$$\bar{Q}_n = \bar{w} X (\bar{w} X \bar{r}) = normal acc.$$

Equations Defining the Rotation of a Rigid Body about a Fixed Axis

$$N = \frac{\partial f}{\partial X}$$

$$C = \frac{\partial f}{\partial x}$$

11/29/2025

For rectilinear motion of a particle

$$\Theta \propto = 0$$
 (uniform rotation)

11/29/2025

Cases (9,6): Can defive "rotational Kinematic equations"

$$\omega = \omega_0 + \omega t$$

$$\Theta - \Theta_0 = \omega_0 t + \frac{1}{2} \alpha t^0$$

$$\omega = \omega_0 + \omega t$$

$$\omega = \omega_0 + \omega t$$

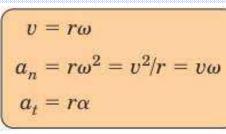
$$\omega = \omega_0 + \omega t$$

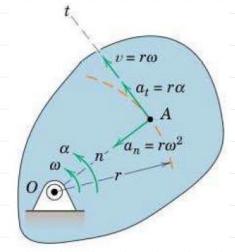
$$\omega = \frac{d\theta}{dt} = \dot{\theta}$$

$$\alpha = \frac{d\omega}{dt} = \dot{\omega} \qquad \text{or} \qquad \alpha = \frac{d^2\theta}{dt^2} = \ddot{\theta}$$

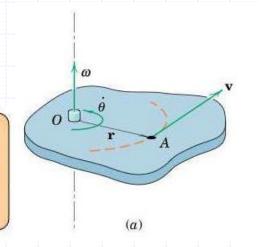
$$\omega d\omega = \alpha d\theta \qquad \text{or} \qquad \dot{\theta} d\dot{\theta} = \ddot{\theta} d\theta$$

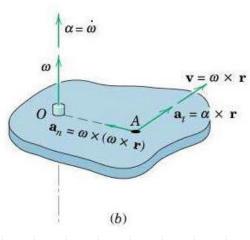
$$\begin{array}{ll} \omega = \omega_0 + \alpha t & v = v_0 + at \\ \omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0) & \equiv v^2 = v_0^2 + 2a(s - s_0) \\ \theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2 & s = s_0 + v_0 t + \frac{1}{2}at^2 \end{array}$$



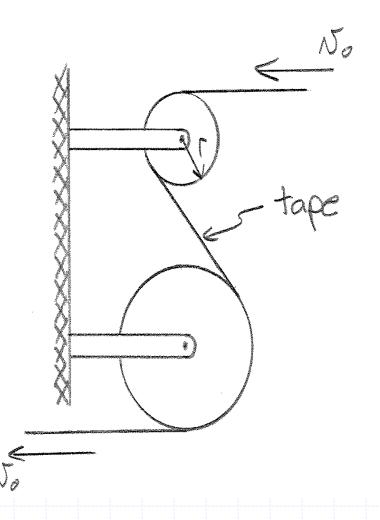


$$\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$$
 $\mathbf{a}_n = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$
 $\mathbf{a}_t = \boldsymbol{\alpha} \times \mathbf{r}$





EXample:



Tape speed is uniformly increased from No to $N = 6^{4}$ s in $\Delta t = 4$ s.

Find, for top drum during At:

@ ang. acc.

3 X revolutions

Ang. Velocities

No = TWO

$$\Rightarrow N_0 = \frac{N_0}{F} = \frac{(2 f)/s}{(9/10 f)} = 26.667 rad/s$$

Similarly,

$$W = \frac{\sqrt{5}}{\sqrt{5}} = \frac{(6 + \sqrt{5})}{(9/10 + 1)} = 80.0$$

11/30/2025

17

PART A:

$$\omega = \omega_0 + \alpha t$$

$$\Theta - \Theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 - \omega_0^2 = 2\alpha(\Theta - \Theta_0)$$
3

$$VSE(D): \qquad \alpha = \frac{W - W_0}{t}$$

$$\alpha = \frac{(80.0 \text{ Fod/s}) - (36.667 \text{ Fod/s})}{(45)} = 13.333 \text{ Fod/s}$$

PART S:

Use @ or 3.

From 3,

$$\Delta \Theta = \frac{\omega^2 - \omega_o^2}{2\alpha}$$

11/29/2025

19

Sample Problem 5/1

A flywheel rotating freely at 1800 rev/min clockwise is subjected to a variable counterclockwise torque which is first applied at time t=0. The torque produces a counterclockwise angular acceleration $\alpha=4t \text{ rad/s}^2$, where t is the time in seconds during which the torque is applied. Determine (a) the time required for the flywheel to reduce its clockwise angular speed to 900 rev/min, (b) the time required for the flywheel to reverse its direction of rotation, and (c) the total number of revolutions, clockwise plus counterclockwise, turned by the flywheel during the first 14 seconds of torque application.

Solution. The counterclockwise direction will be taken arbitrarily as positive.

(a) Since α is a known function of the time, we may integrate it to obtain angular velocity. With the initial angular velocity of $-1800(2\pi)/60 = -60\pi$ rad/s, we have

$$[d\omega = \alpha \ dt] \qquad \int_{-60\pi}^{\omega} d\omega = \int_{0}^{t} 4t \ dt \qquad \omega = -60\pi + 2t^{2}$$

Substituting the clockwise angular speed of 900 rev/min or $\omega = -900(2\pi)/60 = -30\pi$ rad/s gives

$$-30\pi = -60\pi + 2t^2$$
 $t^2 = 15\pi$ $t = 6.86$ s Ans.

(b) The flywheel changes direction when its angular velocity is momentarily zero. Thus,

$$-30\pi = -60\pi + 2t^2$$
 $t^2 = 15\pi$ $t = 6.86 \text{ s}$ Ans.

(b) The flywheel changes direction when its angular velocity is momentarily zero. Thus,

$$0 = -60\pi + 2t^2$$
 $t^2 = 30\pi$ $t = 9.71$ s Ans.

(c) The total number of revolutions through which the flywheel turns during 14 seconds is the number of clockwise turns N_1 during the first 9.71 seconds, plus the number of counterclockwise turns N_2 during the remainder of the interval. Integrating the expression for ω in terms of t gives us the angular displacement in radians. Thus, for the first interval

or $N_1 = 1220/2\pi = 194.2$ revolutions clockwise.

For the second interval

2

3

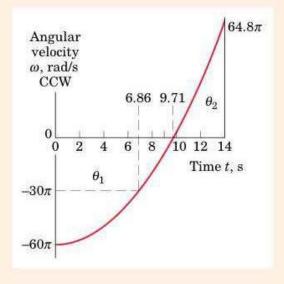
$$\int_0^{\theta_2} d\theta = \int_{9.71}^{14} (-60\pi + 2t^2) dt$$

$$\theta_2 = [-60\pi t + \frac{2}{3}t^3]_{9.71}^{14} = 410 \text{ rad}$$

or $N_2=410/2\pi=65.3$ revolutions counterclockwise. Thus, the total number of revolutions turned during the 14 seconds is

$$N = N_1 + N_2 = 194.2 + 65.3 = 259 \text{ rev}$$
 Ans.

We have plotted ω versus t and we see that θ_1 is represented by the negative area and θ_2 by the positive area. If we had integrated over the entire interval in one step, we would have obtained $|\theta_2| - |\theta_1|$.



Again note that the minus sign signifies clockwise in this problem.

3 We could have converted the original expression for α into the units of rev/s², in which case our integrals would have come out directly in revolutions.

Sample Problem 5/2

The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of 3 ft/sec in a vertical rise of 4 ft with constant acceleration. As the load passes this position, compute (a) the acceleration of point C on the cable in contact with the drum and (b) the angular velocity and angular acceleration of the pinion A.

Solution. (a) If the cable does not slip on the drum, the vertical velocity and acceleration of the load L are, of necessity, the same as the tangential velocity v and tangential acceleration a_t of point C. For the rectilinear motion of L with constant acceleration, the n- and t-components of the acceleration of C become

$$[v^2=2as] \hspace{1cm} a=a_t=v^2/2s=3^2/[2(4)]=1.125 \; {\rm ft/sec^2}$$

①
$$[a_n = v^2/r]$$
 $a_n = 3^2/(24/12) = 4.5 \text{ ft/sec}^2$ $a_C = \sqrt{(4.5)^2 + (1.125)^2} = 4.64 \text{ ft/sec}^2$ Ans.

(b) The angular motion of gear A is determined from the angular motion of gear B by the velocity v_1 and tangential acceleration a_1 of their common point of contact. First, the angular motion of gear B is determined from the motion of point C on the attached drum. Thus,

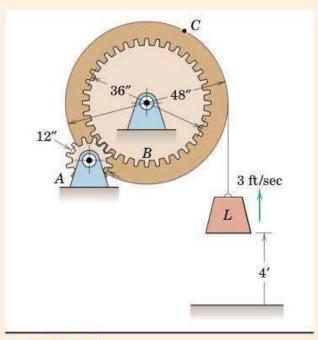
$$[v = r\omega]$$
 $\omega_B = v/r = 3/(24/12) = 1.5 \text{ rad/sec}$

$$[a_t = r\alpha] \hspace{1cm} \alpha_B = a_l/r = 1.125/(24/12) = 0.562 \ \mathrm{rad/sec^2}$$

Then from $v_1 = r_A \omega_A = r_B \omega_B$ and $a_1 = r_A \alpha_A = r_B \alpha_B$, we have

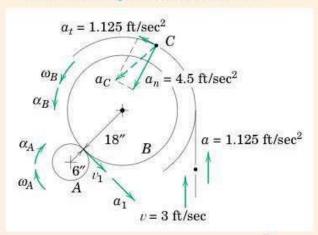
$$\omega_A = \frac{r_B}{r_A} \omega_B = \frac{18/12}{6/12} \, 1.5 = 4.5 \, \text{rad/sec CW}$$
 Ans.

$$\alpha_A = \frac{r_B}{r_A} \alpha_B = \frac{18/12}{6/12} \ 0.562 = 1.688 \ \mathrm{rad/sec^2 \ CW}$$
 Ans.

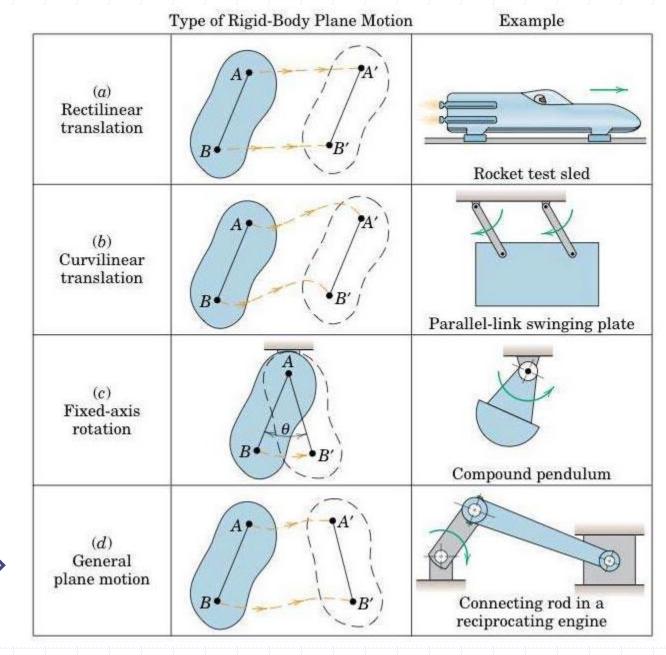


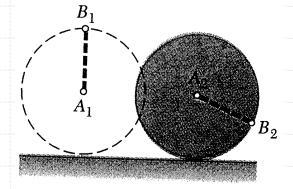
Helpful Hint

 Recognize that a point on the cable changes the direction of its velocity after it contacts the drum and acquires a normal component of acceleration.

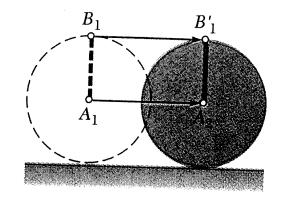


3. General plane motion

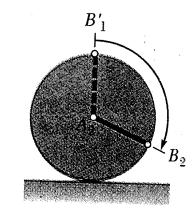




Plane motion

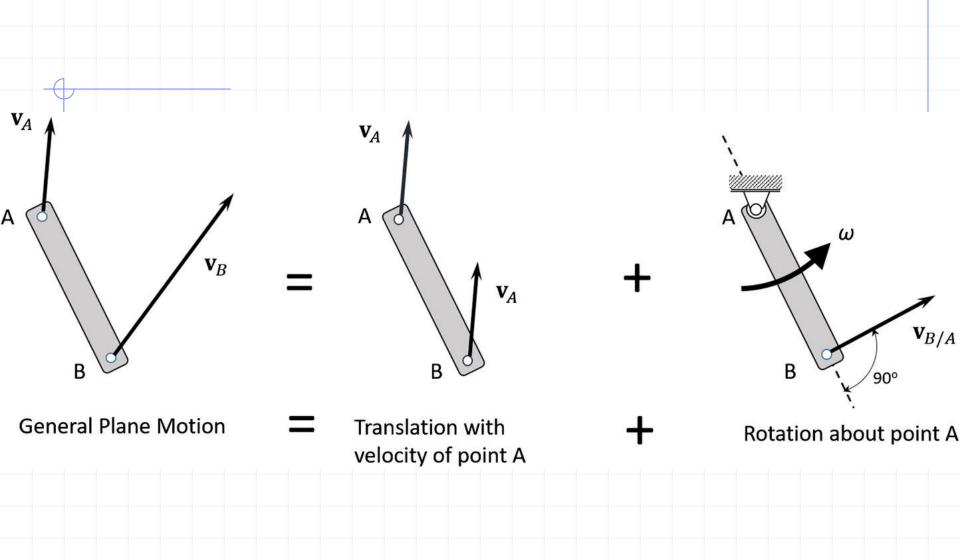


Translation with A



Rotation about A

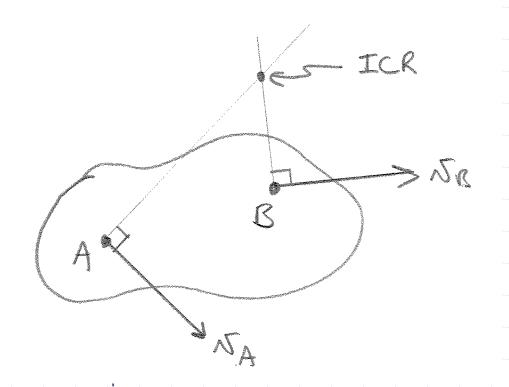
+



Instantaneous Center of Rotation

Locating the ICR

If the dir. of Ja, Jo are known:



27

DYNOMICS of Rigid Bodies in Place Motion

In Statics,

$$M_{\rm p} = 0$$

In Oynamics, we'll show that

11/29/2025

some restrictions

more restrictions

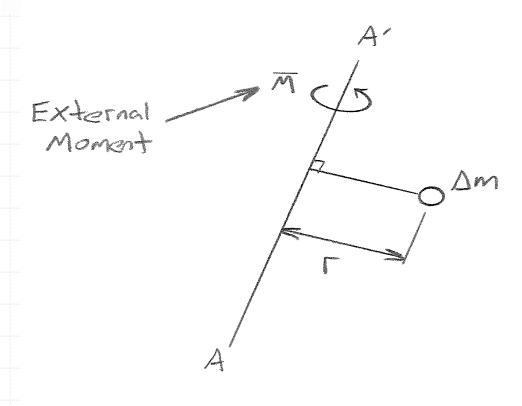
Main Results
to show

Mp = Moment about P of all external forces acting on system $M_P = I_P Z$ IP = Mass moment of ination about P ac = absolute acceleration of system mass center c M = total system mass Hp = angular momentum of system about P HP = IPW

11/29/2025

30

Mass Moments of Inatia (MOI)



We define

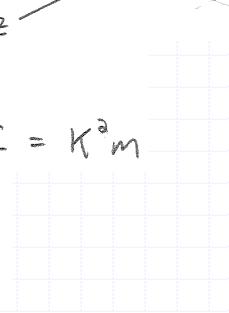
AI = FJAM

11/29/2025

31

$$I^{\xi} = \int (X_3 + X_3) dw$$

$$K = \sqrt{\frac{I}{M}}$$



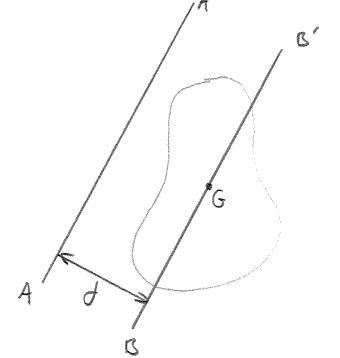
Parallel Axis Theorem

I = MOI about an axis AA'

I = MOI about an axis BB' (AA'/BB')

M = total mass of RB

d = dist. separating AA' & BB'



Equations of Motion

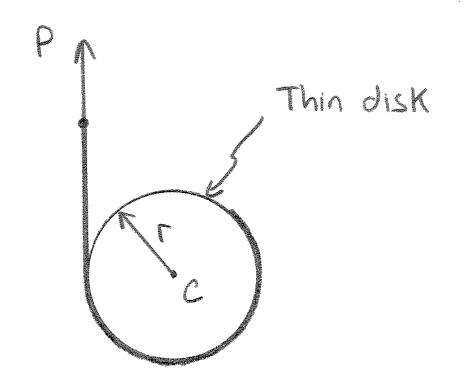
F=Mac M=IPZ

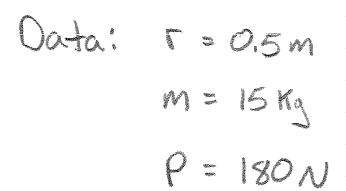
EOM

Limitations:

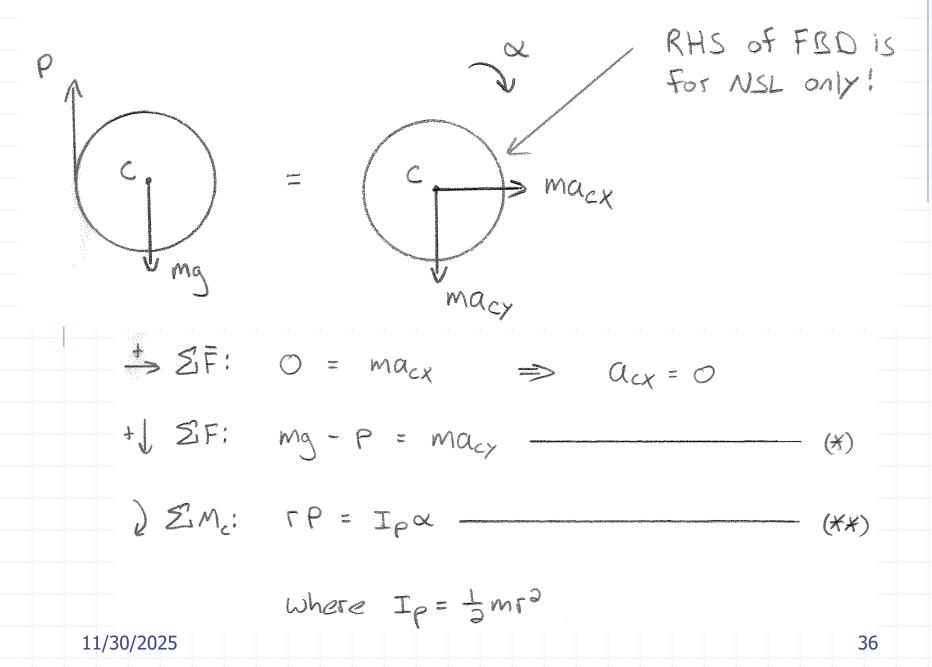
- 1) RB of constant mass
- 1 Plane motion
- 3) P is mass center or a fixed point

EXAMORS





FBO of DISK



$$Q_{cy} = \frac{M_3 - P}{M} = 9 - \frac{P}{M}$$

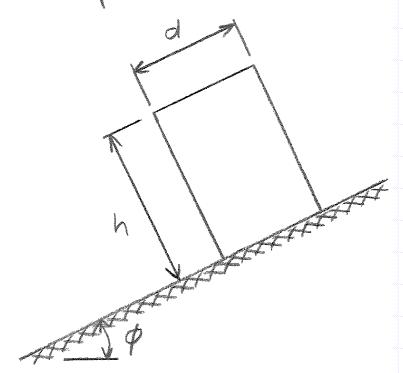
$$= \frac{(15 \, \text{Kg})(9.8 \, | \text{Ms}^2) - (180 \, \text{N})}{(15 \, \text{Kg})}$$

11/29/2025

$$Ab = \frac{1}{2}ME_{A}$$
 \Rightarrow $A = \frac{96}{8}$

11/29/2025

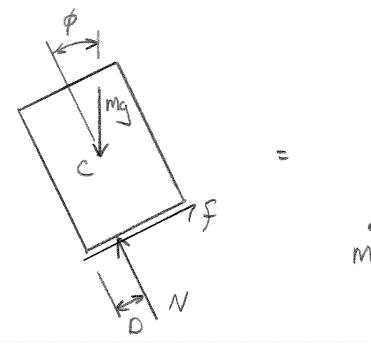
Example:

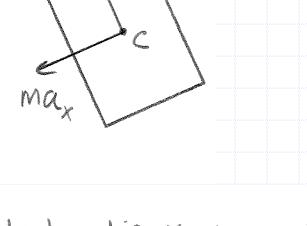


Data: UK, p

Assume slip.

Find (%) min such that the cylinder does not tip while sliding down the inclined plane. FBO of cylinder,





May

At minimum ratio of d to h, tip is impending.

11/29/2025

40

Friction Law:

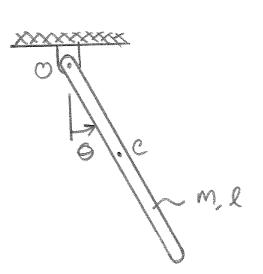
$$f = \mathcal{U}_K \mathcal{N} \tag{38}$$

 $(xx) \rightarrow (x)$:

11/29/2025

41

Example:



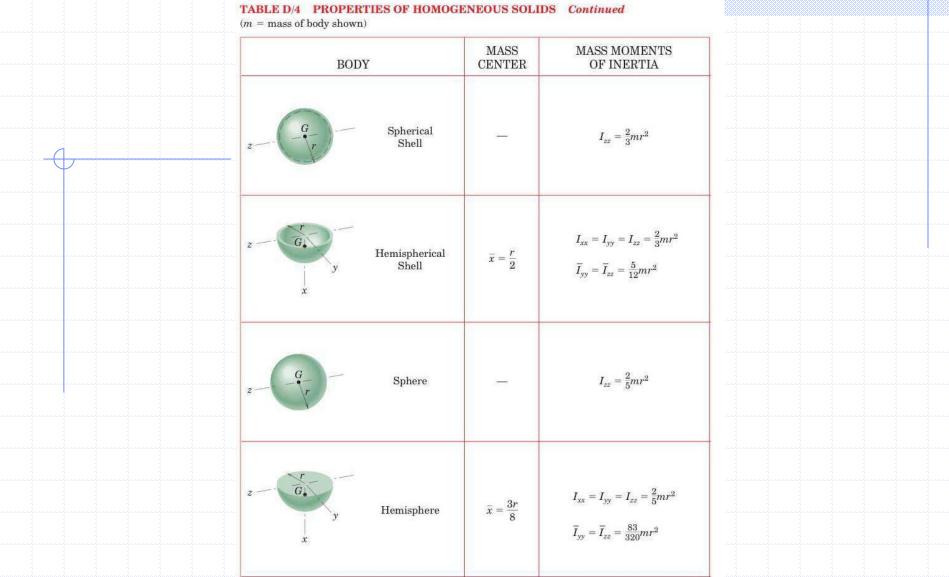
Derive the diff. Eg. of motion

$$\Rightarrow \ddot{\theta} + \frac{39}{32} \sin \theta = 0$$

TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS

(m = mass of body shown)

BODY	MASS CENTER	MASS MOMENTS OF INERTIA
$z = \frac{l}{2}$ $z = \frac{l}{2}$ $z = \frac{l}{2}$ Circular Cylindrical Shell	-	$\begin{split} I_{xx} &= \frac{1}{2} m r^2 + \frac{1}{12} m l^2 \\ I_{x_1 x_1} &= \frac{1}{2} m r^2 + \frac{1}{3} m l^2 \\ I_{zz} &= m r^2 \end{split}$
$ \begin{array}{c c} \frac{l}{2} & \frac{l}{2} \\ \hline & Half Cylindrical Shell} $	$\bar{x} = \frac{2r}{\pi}$	$\begin{split} I_{xx} &= I_{yy} \\ &= \frac{1}{2} m r^2 + \frac{1}{12} m l^2 \\ I_{x_1 x_1} &= I_{y_1 y_1} \\ &= \frac{1}{2} m r^2 + \frac{1}{3} m l^2 \\ I_{zz} &= m r^2 \\ \overline{I}_{zz} &= \left(1 - \frac{4}{\pi^2}\right) m r^2 \end{split}$
$\frac{l}{z} + \frac{l}{2} + \frac{l}{2}$ Circular Cylinder	-	$I_{xx} = \frac{1}{4}mr^2 + \frac{1}{12}ml^2$ $I_{x_1x_1} = \frac{1}{4}mr^2 + \frac{1}{3}ml^2$ $I_{zz} = \frac{1}{2}mr^2$
$ \begin{array}{c c} \frac{l}{2} & \frac{l}{2} \\ \hline & \\ \hline & \\ & \\ & \\ & \\ & \\ & $	$\overline{x} = \frac{4r}{3\pi}$	$\begin{split} I_{xx} &= I_{yy} \\ &= \frac{1}{4} m r^2 + \frac{1}{12} m l^2 \\ I_{x_1 x_1} &= I_{y_1 y_1} \\ &= \frac{1}{4} m r^2 + \frac{1}{3} m l^2 \\ I_{zz} &= \frac{1}{2} m r^2 \\ \overline{I}_{zz} &= \left(\frac{1}{2} - \frac{16}{9 \pi^2}\right) m r^2 \end{split}$
$\begin{array}{c c} & \frac{l}{2} & \frac{l}{2} \\ \hline & & \\ & &$	-	$\begin{split} I_{xx} &= \frac{1}{12} m (a^2 + l^2) \\ I_{yy} &= \frac{1}{12} m (b^2 + l^2) \\ I_{zz} &= \frac{1}{12} m (a^2 + b^2) \\ I_{y_1y_1} &= \frac{1}{12} m b^2 + \frac{1}{3} m l^2 \\ I_{y_2y_2} &= \frac{1}{3} m (b^2 + l^2) \end{split}$



$$\begin{bmatrix} \frac{l}{2} & \frac{l}{2} \\ & & \\ & & \\ y_1 & y \end{bmatrix}$$

$$I_{yy} = \frac{1}{12} m l^2$$

$$I_{y_1 y_1} = \frac{1}{3} m l^2$$

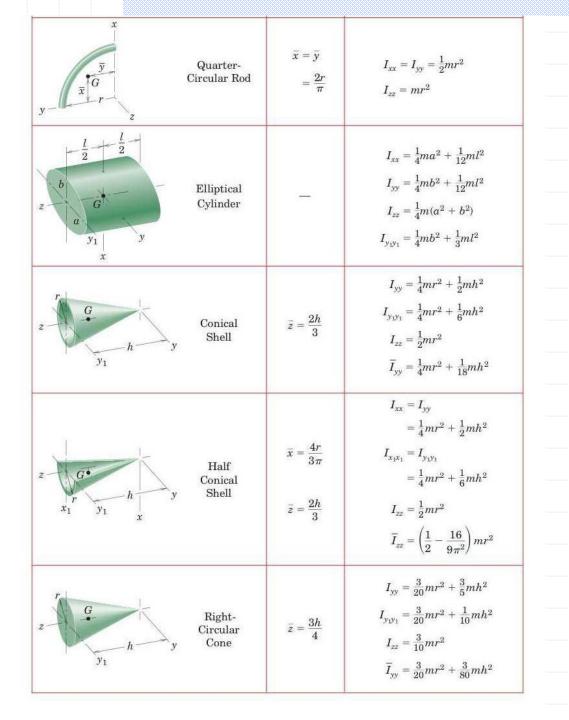


TABLE D/4 PROPERTIES OF HOMOGENEOUS SOLIDS Continued

(m = mass of body shown)

BODY	MASS CENTER	MASS MOMENTS OF INERTIA
z x_1 y_1 y Half Cone	$\bar{x} = \frac{r}{\pi}$ $\bar{z} = \frac{3h}{4}$	$\begin{split} I_{xx} &= I_{yy} \\ &= \frac{3}{20} m r^2 + \frac{3}{5} m h^2 \\ I_{x_1 x_1} &= I_{y_1 y_1} \\ &= \frac{3}{20} m r^2 + \frac{1}{10} m h^2 \\ I_{zz} &= \frac{3}{10} m r^2 \\ \bar{I}_{zz} &= \left(\frac{3}{10} - \frac{1}{\pi^2}\right) m r^2 \end{split}$
$x \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $x \qquad G$ $y \qquad Semiellipsoid$	$\bar{z} = \frac{3c}{8}$	$\begin{split} I_{xx} &= \frac{1}{5}m(b^2 + c^2) \\ I_{yy} &= \frac{1}{5}m(a^2 + c^2) \\ I_{zz} &= \frac{1}{5}m(a^2 + b^2) \\ \overline{I}_{xx} &= \frac{1}{5}m(b^2 + \frac{19}{64}c^2) \\ \overline{I}_{yy} &= \frac{1}{5}m(a^2 + \frac{19}{64}c^2) \end{split}$
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$ z b G Elliptic Paraboloid	$\bar{z} = \frac{2c}{3}$	$\begin{split} I_{xx} &= \frac{1}{6}mb^2 + \frac{1}{2}mc^2 \\ I_{yy} &= \frac{1}{6}ma^2 + \frac{1}{2}mc^2 \\ I_{zz} &= \frac{1}{6}m(a^2 + b^2) \\ \overline{I}_{xx} &= \frac{1}{6}m(b^2 + \frac{1}{3}c^2) \\ \overline{I}_{yy} &= \frac{1}{6}m(a^2 + \frac{1}{3}c^2) \end{split}$
x — a G Rectangular Tetrahedron	$\bar{x} = \frac{a}{4}$ $\bar{y} = \frac{b}{4}$ $\bar{z} = \frac{c}{4}$	$\begin{split} I_{xx} &= \frac{1}{10} m (b^2 + c^2) \\ I_{yy} &= \frac{1}{10} m (a^2 + c^2) \\ I_{zz} &= \frac{1}{10} m (a^2 + b^2) \\ \overline{I}_{xx} &= \frac{3}{80} m (b^2 + c^2) \\ \overline{I}_{yy} &= \frac{3}{80} m (a^2 + c^2) \\ \overline{I}_{zz} &= \frac{3}{80} m (a^2 + b^2) \end{split}$
y a R R R	$\bar{x} = \frac{a^2 + 4R^2}{2\pi R}$	$I_{xx} = I_{yy} = \frac{1}{2}mR^2 + \frac{5}{8}ma^2$ $I_{zz} = mR^2 + \frac{3}{4}ma^2$