
Chapter 3: Inheritance

Outline

• Create and interact with objects that inherit from
other objects

• Create subclasses

• Explain abstract methods and classes

• Define reusable classes based on inheritance and
abstract classes and abstract methods.

• Differentiate the abstract classes and Java
interfaces.

• Define methods, using the protected modifier.

2

Inheritance

• Inheritance is an object-oriented mechanism that
derives a new class from an existing class.

• The Java programming language allows a class to
extend only one other class. This restriction is
referred to as single inheritance.

• inheritance allows defining a class in terms of a
previously defined class. In the Java programming
language, this can be achieved by the keyword
extends.

3

• public class Employee {
public String name = "";
public double salary;
public Date birthDate;
public String getDetails() {...}

}

• public class Manager {
public String name = "";
public double salary;
public Date birthDate;
public String department;
public String getDetails() {...}

}

4

• Manager class is created as a subclass
of the Employee class.

• The Manager class is defined to have all
the variables and methods that an
Employee object has.

public class Manager extends Employee {
public String department;

}

5

Inheritance Relationship

• Inheritance is appropriate where an "is
a" relationship exists between two
classes.

• one of the classes is a specialized
version of the other.
– A manager is an employee

– A taxi is a car
– An UndergraduateStudent is a Student

– A GraduateStudent is a Student

6

Inheritance Hierarchy

7

Identification of What is Inherited

• Before beginning the specialization process, it is
essential to determine precisely what will be inherited
from the parent class.

• Use the access control rules to identify the attributes
and methods that the subclass will inherit from the
parent class.

• The key factors that determine which attributes and
methods are inherited are the access control
modifiers public, protected, private, default
access, and the packages to which the parent class
and the child class belong:

8

The Protected Modifier

• The modifier protected makes a data
member or method visible and accessible
to the instances of the class and the
descendant classes.

• Public data members and methods are
accessible to everyone.

• Private data members and methods are
accessible only to instances of the class.

9

Inheritance and Member Accessibility

• We use the following visual representation of
inheritance to illustrate data member
accessibility.

10

Class Hierarchy

This shows the inherited
components of the
superclass are part of
the subclass instance

Instances

The Effect of Three Visibility Modifiers

11

Accessibility of Super from Sub
• Everything except the private members of the Super class

is visible from a method of the Sub class.

12

Accessibility from Another Instance

• Data members accessible from an instance are also
accessible from other instances of the same class.

13

Accessibility from Another Instance

14

Inheritance and Constructors

• Unlike members of a superclass,
constructors of a superclass are not
inherited by its subclasses.

• You must define a constructor for a class or
use the default constructor added by the
compiler.

• The statement
super();

calls the superclass’s constructor.

15

Subclass Constructor behavior

• If the subclass constructor does not call the
constructor of the superclass, then the default
behavior is to always call (implicit call) the
constructor with no arguments of the parent
class. If the parent class does not define a
constructor as having no arguments, then the
subclass will not compile

• The invocation of the parent class constructor
occurs before the first executable line of the
subclass constructor.

16

Implicit call to the superclass
constructor

• public class Employee {
String name;
public Employee() {

name = "unallocated";
}
public Employee(String n) { name = n; }

}
• public class Manager extends Employee {

String department;
public Manager(String s, String d) {

// Will call no-arg parent constructor Employee()
// Inherited attribute name is set to "unallocated"

department = d;
}

}

17

Implicit call to the superclass
constructor

• public class Employee {
String name;

public Employee(String n) { name = n; }
}

• public class Manager extends Employee {
String department;
public Manager(String s, String d) {

// Will call no-arg parent constructor Employee()
// here, we will get a compile error.

department = d;
}

}

18

Implicit call to the superclass
constructor

• public class Employee {
String name;

}
• public class Manager extends Employee {

String department;
public Manager(String s, String d) {

// Will call no-arg parent constructor Employee()
// here, the default constructor of Employee is called.

department = d;
}

}

19

Implicit call to the superclass
constructor

• public class Employee {
private String name;

}
• public class Manager extends Employee {

String department;
public Manager(String s, String d) {

// Will call no-arg parent constructor Employee()
// here, the default constructor of Employee is called.

name = s; // error: name is a private attribute
department = d;

}
}

20

Implicit call to the superclass
constructor

• public class Employee {
protected String name;

public Employee() {
name = "unallocated";

}
public Employee(String n) { name = n; }

}
• public class Manager extends Employee {

String department;
public Manager(String s, String d) {

// Will call no-arg parent constructor Employee()
// Inherited attribute name is set to "unallocated"
name = s;
department = d;

}
} 21

Management of Parent Class
Constructor Invocation

• We can explicitly invoke a particular parent class
constructor as part of a child class initialization by
using the keyword super from the child constructor's
first line.

• The super keyword refers to the superclass of the
class in which the keyword is used.

• We can use any number of appropriate arguments
by using the keyword super to call the appropriate
constructor of the parent class.

• If there is no such parent constructor, a
compile error occurs.

22

Explicit call to the superclass
constructor

• public class Employee {
private String name;
public Employee() { name = "unallocated"; }
public Employee(String n) { name = n;}

}
• public class Manager extends Employee {

String department;
public Manager(String s, String d) {

super(s); // Call specific parent constructor
// with String argument

department = d;
}

}

23

24

Constructor Chaining

public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

25

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

1. Start from the
main method

26

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

2. Invoke Faculty
constructor

27

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

3. Invoke Employee’s no-
arg constructor

28

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

4. Invoke Employee(String)
constructor

29

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

5. Invoke Person()
constructor

30

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

6. Execute println

31

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

7. Execute println

32

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

8. Execute println

33

Trace Execution
public class Faculty extends Employee {

public static void main(String[] args) {

new Faculty();

}

public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {

public Employee() {

this("(2) Invoke Employee’s overloaded constructor");

System.out.println("(3) Employee's no-arg constructor is invoked");

}

public Employee(String s) {

System.out.println(s);

}

}

class Person {

public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");

}

}

9. Execute println

Overriding Methods

• When a subclass inherits a method, it
inherits the interface of the method as well
as the implementation of the method from
its parent class.
– For some methods, the parent implementation

might not be appropriate for the subclass.

• A method of a new class that has the name,
return type, and arguments exactly as a
method in the parent class, then the new
method is said to override the old one.

34

Method Overriden

public class Employee {
String name;
int salary;
public String getDetails() {
return "Name: " + name + "\n” + "Salary: " + salary;

}
}

public class Manager extends Employee {
String department;
public String getDetails() {
return "Name: " + name + "\n” + "Manager of " + department;

}
}

35

Invoking Overridden Methods Using
the super Keyword

• when we override a method, our goal is not to replace
the existing behavior but to extend that behavior in
some way.

public class Employee {
private String name;
private double salary;
private Date birthDate;
public String getDetails() {

return "Name: " + name + "\nSalary: " + salary;
}

}

public class Manager extends Employee {
private String department;
public String getDetails() { // call parent method

return super.getDetails() + "\nDepartment: " + department;
}

}
36

Abstract Methods and Classes

• An abstract method is a method that is
declared but not yet implemented. No body
definition is provided. To declare an abstract
method:
– Use the abstract modifier to mark the method

as abstract
– Replace the body of the method with a

semicolon (;) character.

• For example:
public abstract double area();

• An abstract method can only be declared in
an abstract class
37

What Is an Abstract Class?

• An abstract class is a class that is
incomplete or deemed to be incomplete and
is required to be declared by using the
abstract modifier.

• A class must use the abstract modifier if any
of the following are true:
– It explicitly contains a declaration of an

abstract method.

– It inherits an abstract method from its
superclass and does not provide an
implementation for the method.

38

Abstract class declaration

• public abstract class Shape {
public abstract double area();
public abstract double perimeter();
public void display() {

System.out.println(area()+ “--” +perimeter());
}

}
--
// the file Rectangle.java
public class Rectangle extends Shape {

private double l;
private double w;
public Rectangle(double x, double y) { l=x; w=y; }
public final double area() { return (l*w);}
public double perimeter() { return (2*(l+w)); }

}

39

Declaring an Abstract Class

• Declare the abstract class using the
abstract keyword.

• Declare the attributes, if any, for the class.

• Declare the abstract methods, if any, in the
body of the class.

• Declare the concrete methods, if any, for
the class.

• Declare the constructors, if any, for the
class.
40

Creating the Implementing
Subclasses

• Declare the subclass as extending the abstract
class.

• Override each abstract method of the parent
class

– provide an implementation for each abstract method.

• Override, if necessary, the concrete methods of
the parent abstract class.

• If necessary, add new methods and attributes to
the subclass for a particular specialization.

• Add any necessary constructors.

41

Working With Abstract Class
Reference Types

• As with a concrete class, an abstract class can be used as a data
type for a reference variable declaration.

• The following statement is legal:

Shape myShape;

• An abstract class cannot be instantiated.

• The following will cause a compile time error if the Account class is
an abstract class.

myShape = new Shape(); // will not compile

• Only concrete classes can be instantiated. Consequently, a
reference variable of an abstract class data type must be assigned
an instance of a concrete subclass of the abstract class.

• The following compiles if the Rectangle class is a concrete subclass
of the abstract class Shape.

myShape = new Rectangle(); // will compile

42

final Modifier

• Final class: The Java allows to apply the keyword final to
classes. If this is done, the class cannot be subclassed.

• final class MyDate {
– // this class cannot be subclassed . . .

• }
• Final attribute:

– all objects will have the same value for the final variable

• public static final int MAX_ARRAY_SIZE = 25;

– each object has an individual value for the final variable. Any
attempt to change the value of a final variable after it has been
set causes a compiler error.

• public final int maxArraySize;
• myArray(int maxSize) {

maxArraySize = maxSize;

• }

43

Final Methods

• Final method : Methods declared with the final
keyword cannot be overridden.
public class Rectangle extends Shape {

private double l;
private double w;
public Rectangle(double x, double y) { l=x; w=y; }

public final double area() { return (l*w);}

public double perimeter() { return (2*(l+w)); }
}

public class Square extends Rectangle {
public double area() { return l*l;} // will not compile
public double perimeter() { return 4*l;} // will compile

}

44

