Introduction to Manufacturing, AGE-1320 Ahmed M. El-Sherbeeny, PhD Fall-2025

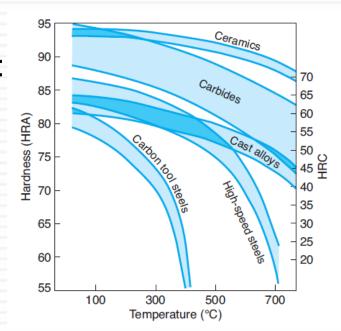
Fundamentals of Machining part 2 (Chapter 22):
Cutting-Tool Materials and Cutting Fluids

Manufacturing Engineering Technology in SI Units, 6th Edition

# Chapter Outline

- 1. Introduction
- 2. Types of Chips Produced in Metal Cutting
- 3. Tool Life: Wear and Failure
- 4. Cutting Tool Materials
- 5. Cutting Fluids






- Cutting tool is subjected to –as mentioned before– :
- 1. High temperatures,
- 2. High contact stresses
- 3. Rubbing along the tool—chip interface and along the

machined surface

Cutting-tool material must possess:

- 1. Hot hardness (see right)
  - compare ceramics vs. carbon steels
- Toughness and impact strength
  - 3. Thermal shock resistance
- → 4. Wear resistance
  - Chemical stability and inertness (e.g. no adhesion)



- Tool materials -see next 3 slides- may not have all of the desired properties for a particular machining operation:
- Hardness, strength: ensure good mechanical properties of workpiece material
- Impact strength: important for interrupted cuts (e.g. milling)
  - Melting temperature: important for tool material due to high temp. generated in cutting zone
  - Physical properties (e.g. thermal conductivity, coefficient of thermal expansion): ensure tool resistance to thermal fatigue, shock
- Compare (for example) in <u>slide 6</u>,
  - High speed steels: high toughness, but low hot hardness
  - Ceramics: high resistance to temp. & wear, but brittle and can chip
  - Diamonds: hardest material, but most expensive

| General Characteristics of Tool Materials |            |             |               |              |              |              |                |
|-------------------------------------------|------------|-------------|---------------|--------------|--------------|--------------|----------------|
|                                           | High-speed | Cast-cobalt | Carbides      |              |              | Cubic boron  | Single-crystal |
| Property                                  | steels     | alloys      | WC            | TiC          | Ceramics     | nitride      | diamond*       |
| Hardness                                  | 83-86 HRA  | 82-84 HRA   | 90-95 HRA     | 91-93 HRA    | 91-95 HRA    | 4000-5000 HK | 7000-8000 HK   |
|                                           |            | 46-62 HRC   | 1800-2400 HK  | 1800-3200 HK | 2000-3000 HK |              |                |
| Compressive strength,                     |            |             |               |              |              |              |                |
| MPa                                       | 4100-4500  | 1500–2300   | 4100–5850     | 3100–3850    | 2750–4500    | 6900         | 6900           |
| Transverse rupture strength,              |            |             |               |              |              |              |                |
| MPa                                       | 2400-4800  | 1380-2050   | 1050–2600     | 1380–1900    | 345–950      | 700          | 1350           |
| Impact strength,                          |            |             |               |              |              |              |                |
| J                                         | 1.35-8     | 0.34-1.25   | 0.34-1.35     | 0.79-1.24    | < 0.1        | < 0.5        | < 0.2          |
| Modulus of elasticity,                    |            |             |               |              |              |              |                |
| GPa                                       | 200        | _           | 520-690       | 310-450      | 310-410      | 850          | 820-1050       |
| Density,                                  |            |             |               |              |              |              |                |
| kg/m <sup>3</sup>                         | 8600       | 8000-8700   | 10,000-15,000 | 5500-5800    | 4000-4500    | 3500         | 3500           |
| _                                         | 7.45       | 10.20       | <b>7</b> 0.00 |              | 100          | 0.5          | 0.5            |
| Volume of hard phase, %                   | 7–15       | 10–20       | 70–90         | _            | 100          | 95           | 95             |
| Melting or decomposition temperature,     |            |             |               |              |              |              |                |
| °C                                        | 1300       | _           | 1400          | 1400         | 2000         | 1300         | 700            |
| Thermal conductivity, W/m K               | 30–50      | _           | 42–125        | 17           | 29           | 13           | 500-2000       |
| Coefficient of thermal                    |            |             |               |              |              |              |                |
| expansion, ×10 <sup>-6</sup> /°C          | 12         | _           | 4–6.5         | 7.5–9        | 6-8.5        | 4.8          | 1.5-4.8        |

<sup>\*</sup>The values for polycrystalline diamond are generally lower, except for impact strength, which is higher.

7

General Characteristics of Cutting-tool Materials (These Tool Materials Have a Wide Range of Compositions and Properties; Overlapping Characteristics Exist in Many Categories of Tool Materials)

|                                                                                                                                      | High-speed<br>steels                | Cast-cobalt<br>alloys        | Uncoated<br>carbides           | Coated<br>carbides         | Ceramics                                                    | Polycrystalline cu<br>boron nitride             | bic<br>Diamond                                  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|--------------------------------|----------------------------|-------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Hot hardness Toughness Impact strength Wear resistance Chipping resistance Cutting speed Thermal-shock resistance Tool material cost | <del>*</del>                        |                              |                                |                            |                                                             |                                                 | <u> </u>                                        |
| Depth of cut                                                                                                                         | Light to<br>heavy                   | Light to<br>heavy            | Light to<br>heavy              | Light to<br>heavy          | Light to<br>heavy                                           | Light to heavy                                  | Very light for<br>single-crystal<br>diamond     |
| Processing method                                                                                                                    | Wrought,<br>cast, HIP*<br>sintering | Cast<br>and HIP<br>sintering | Cold pressing<br>and sintering | CVD or<br>PVD <sup>†</sup> | Cold<br>pressing<br>and<br>sintering<br>or HIP<br>sintering | High-pressure,<br>high-temperature<br>sintering | High-pressure,<br>high-temperature<br>sintering |

Source: After R. Komanduri.

<sup>\*</sup>Hot-isostatic pressing.

<sup>&</sup>lt;sup>†</sup>Chemical-vapor deposition, physical-vapor deposition.

| General Operating Characteristics of Cutting-tool Materials |                                                                                                                                |                                                                       |                                                                                   |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Tool materials                                              | General<br>characteristics                                                                                                     | Modes of tool<br>wear or failure                                      | Limitations                                                                       |  |  |
| High-speed steels                                           | High toughness, resistance<br>to fracture, wide range of<br>roughing and finishing cuts,<br>good for interrupted cuts          | Flank wear, crater wear                                               | Low hot hardness, limited<br>hardenability, and limited wear<br>resistance        |  |  |
| Uncoated carbides                                           | High hardness over a wide<br>range of temperatures,<br>toughness, wear resistance,<br>versatile, wide range of<br>applications | Flank wear, crater wear                                               | Cannot use at low speeds<br>because of cold welding of chips<br>and microchipping |  |  |
| Coated carbides                                             | Improved wear resistance<br>over uncoated carbides,<br>better frictional and thermal<br>properties                             | Flank wear, crater wear                                               | Cannot use at low speeds<br>because of cold welding of chips<br>and microchipping |  |  |
| Ceramics                                                    | High hardness at elevated<br>temperatures, high abrasive<br>wear resistance                                                    | Depth-of-cut line notching,<br>microchipping, gross<br>fracture       | Low strength and low<br>thermomechanical fatigue<br>strength                      |  |  |
| Polycrystalline<br>cubic boron<br>nitride (cBN)             | High hot hardness, toughness,<br>cutting-edge strength                                                                         | Depth-of-cut line notching,<br>chipping, oxidation,<br>graphitization | Low strength, and low chemical<br>stability at higher temperature                 |  |  |
| Diamond                                                     | High hardness and toughness,<br>abrasive wear resistance                                                                       | Chipping, oxidation,<br>graphitization                                | Low strength, and low chemical<br>stability at higher temperatures                |  |  |

Source: After R. Komanduri and other sources.

9

- Tool Materials (also used for dies and molds in casting, forming, and shaping metallic and non-metallic materials):
- High-speed steels
- 2. Cast-cobalt alloys
- 3. Carbides
- 4. Coated tools
- 5. Alumina-based ceramics
- 6. Cubic boron nitride
- 7. Diamond
  - 8. Whisker-reinforced materials and nanomaterials
  - Tools materials are discussed here in terms of:
    - characteristics, applications

## 1. High-speed Steels

- High-speed steel (HSS) tools were developed to machine at higher speeds than was previously possible
  - compared to carbon steels (<u>low hot hardness</u> ⇒ low speeds)
- Can be hardened to various depths, have good wear resistance and are inexpensive
- Biggest drawback: low cutting speed (V) vs carbide tools







### 2. Cast-cobalt Alloys

- Cast-cobalt alloys have,
  - high hardness
  - good wear resistance
  - maintain hardness at elevated temperatures (hot hardness)
- Drawbacks
  - not as tough as HSS
  - sensitive to impact forces
- Applications: used as Stellite tools:
  - removing large material (little concern for surface finish)



Cast Alloy Lathe Tools

#### 3. Carbides


- AKA cemented/sintered carbides (since 1930's)
- Characteristics of carbides:
- High hardness over a wide range of temperatures (& V)
- Versatile
- 3. Cost-effective tool & die materials for many applications
- 2 groups used in machining (AKA uncoated carbides)
  - Tungsten Carbide (WC): sintered into desired "insert" shapes; used for <u>cutting steels</u>, abrasive nonferrous materials
  - Titanium Carbide: used for machining hard materials



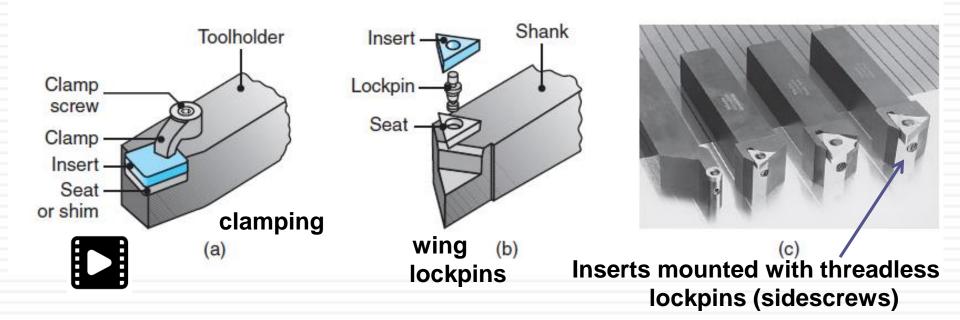



#### 3. Carbides: Inserts

- High-speed steel tools (i.e. traditional tools):
  - 1-piece; shaped for applications: drill bits, milling, gear cutters
  - When cutting edge wears ⇒ tool must be replaced and sharpened, which is a time-consuming and inefficient process
- Inserts: individual cutting tools with several cutting points
  - e.g. Square insert: 8 cutting points (how?)
  - Triangular insert: 6 cutting points



Typical carbide inserts with various shapes and chipbreaker features; note the complex chipbreaking features on inserts





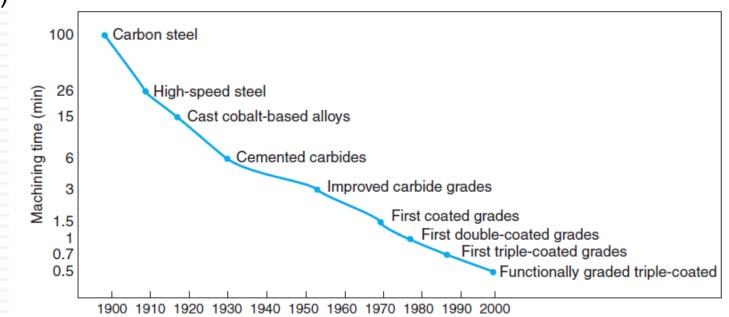



#### 3. Carbides: Inserts

- Various locking mechanisms for inserts are used (below)
- Clamping is the preferred method of securing an insert
  - A particular edge is first used, then when edge is worn:
  - insert is indexed (rotated in its holder) to make another cutting point available

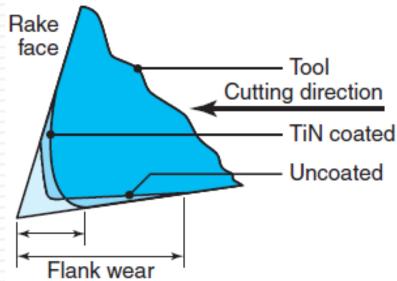


#### 4. Coated Tools


- New alloys and engineered materials
  - developed to have high strength and toughness (since 1960's)
  - problem: abrasive, chemically reactive with tool materials
  - $lue{}$  difficulty in machining these materials  $\Rightarrow$  rise of coated tools
- Coatings have unique properties:
- Lower friction
- 2. Higher adhesion (<u>substrate</u>)
- Higher resistance to wear and cracking
- 4. Acting as a diffusion barrier
- 5. Higher hot hardness and impact resistance



#### 4. Coated Tools


#### Coated tools:

- tools lives up to 10X > uncoated tools
- $\Rightarrow$  allows higher  $V \Rightarrow$  reduced operation time & production costs
- machining time dropped by < 100 times since 1900 (see  $\downarrow$ )
- used now in 40-80% of all machining (esp. turning, milling, drilling)



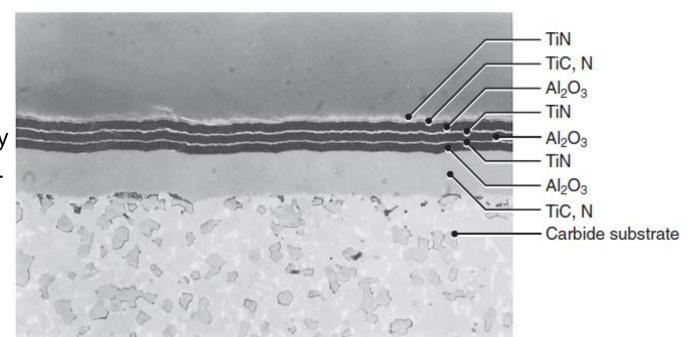
### 4. Coated Tools: Coating Materials

- Common coating materials are:
- 1. Titanium nitride (TiN) used with HSS/carbide tools
- 2. Titanium carbide (TiC) used for abrasive materials
- 3. Titanium carbonitride (TiCN)
- 4. Aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) aka alumina (ceramic) resists flank and crater wear
- Coatings usually have sizes:
   2-15 μm



### 4. Coated Tools: Coating Materials

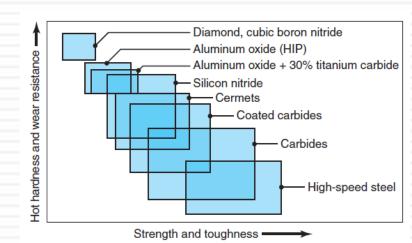
#### **Alternating Multiphase Coatings**


- Size of each coating layer: 2-10 μm
- Note, thinner coating ⇒ grain size ↓ ⇒ hardness ↑
- Inserts can have as many as 13 alternating layers

TiN: low friction

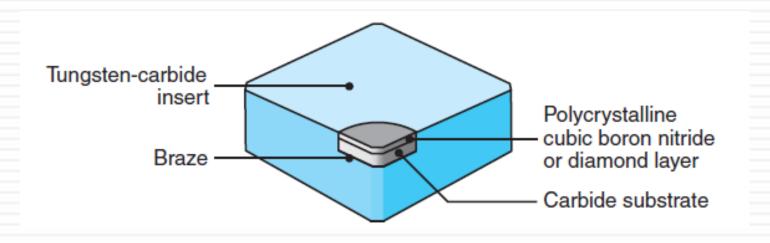
Al<sub>2</sub>O<sub>3</sub>: therm. stability

TiC,N: resists flank +


crater wear



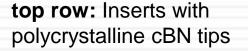
# Cutting-Tool Materials: 5. Ceramics




- Ceramic tool materials
  - consist of fine-grained and high-purity aluminum oxide
  - ceramic inserts: used in <a href="high-speed cutting">high-speed cutting</a> (e.g. <a href="turning">turning</a>)
- Alumina-based ceramic tools
  - high abrasion resistance and hot hardness (see below)
- Cermets (ceramic particles in a metallic matrix)
  - expensive; used for high-speed finishing cuts
- Silicon-nitride (SiN) based ceramic tools
  - high toughness and hot hardness



# Cutting-Tool Materials: 6. Cubic Boron Nitride


- Cubic boron nitride (cBN): hardest material after diamond
  - Carbide (substrate) provides shock resistance
  - cBN layer provides v. high wear resistance & cutting-edge strength
- Suitable for cutting hardened ferrous and high-temp alloys, and for high-speed machining
- But: brittle, so machine must be stiff to resist vibrations



# Cutting-Tool Materials: 7. Diamond

- Diamond: hardest of all known substances
- Properties:
  - low friction, high wear resistance
  - ability to maintain a sharp cutting edge (resharpen often)
  - result in good surface finish (light, uninterrupted finishing cuts)
  - used with soft nonferrous alloys, abrasive materials

Synthetic or industrial diamonds are used since natural diamond has flaws and performance can be unpredictable

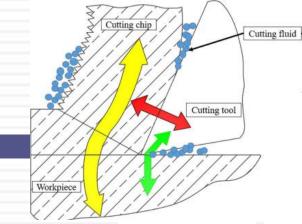


**bottom row:** Solid polycrystalline cBN inserts

**Note:** these are similar to diamond tools






# Cutting-Tool Materials: Tool Costs and Reconditioning of Tools

- Tool costs depend on: tool material, size, shape, chipbreaker features and quality; e.g. (12.5-mm insert):
  - uncoated carbide: \$5-10 (cheapest)
  - diamond-tipped: \$90-125 (most expensive)
- Cost of individual insert is relatively insignificant
  - tooling comprises only 2-4% of all machining costs
  - reason: single tool can be indexed and recycled
  - e.g. square insert with 1 edge lasting 30-60 min will last: ?\*
- Cutting tools can be reconditioned by resharpening
  - carried out manually, or cutter grinders, or comp.-controlled
- Reconditioning of coated tools also done by recoating
  - must make sure dimensions are same as original tool





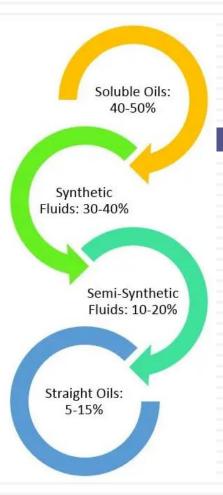
- Cutting fluids used to:
- 1. Reduce friction & wear (⇒ improve tool life, surface finish)
- 2. Cool the cutting zone ( $\Rightarrow$  improve tool life,  $\downarrow$  temperature)
- 3. Reduce forces and energy consumption
- 4. Flush chips from cutting zone (important in drilling)
- 5. Protect machined surface from environmental corrosion
- Cutting fluid used as (depending on machining operation):
  - coolant, or lubricant, or both
  - e.g. water: excellent coolant (i.e. temp  $\downarrow$ ); but not effective lubricant (i.e. no  $\downarrow$  in friction); may also cause oxidation (rust)
- Effectiveness of cutting fluids depends on:
  - machining operation, tool & workpiece materials, cutting speed



#### **Cutting-fluid Action**

- Cutting fluids move to tool-chip interface by
  - seeping (i.e. slow penetration) from sides of the chip
  - capillary action in the unevenness in the interface
- Cutting fluids should thus have
  - small molecular size
  - appropriate "wetting" (high surface tension)
  - e.g. using emulsions, low-weight oils suspended in water
- Discontinuous cutting operations:
  - have easier mechanisms for lubricant application
  - but the tools are more susceptible to thermal shock

#### Types of Cutting Fluids (4 general types)


- Oils (AKA straight oils)
  - mineral, animal, vegetable
- 2. Emulsions (AKA soluble oils)
  - mixture of oil and water and additives
  - water: acts as coolant;oils: reduces oxidation caused by water

#### 3. Semisynthetics

chemical emulsions + little water-diluted mineral oil + additives

#### 4. Synthetics

chemicals with additives, water-diluted, with no oil





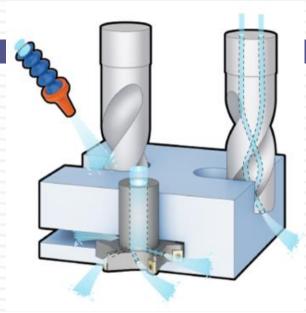
#### **Methods of Cutting-fluid Application**

4 basic methods:

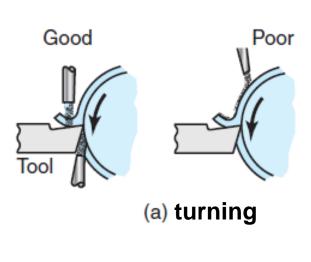
#### 1. Flooding

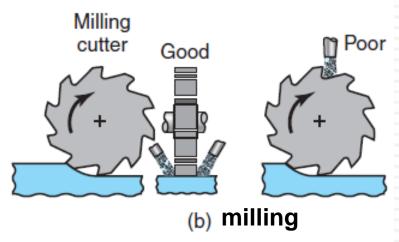
Most common method (see next slide)

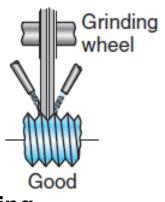
#### 2. Mist

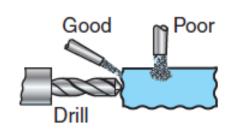

 Allows better view of machined workpiece (compared to flooding), but has lower cooling capability + <u>hazard</u> (why?)

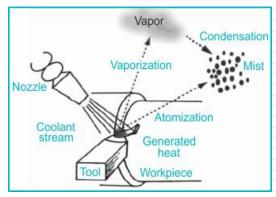
#### 3. High-pressure systems


nozzles: direct cutting fluid powerfully into <u>relief</u> (flank) face


#### 4. Through the cutting tool system


 used when difficult to apply cutting fluid into the cutting zone (see figure up)





#### Proper Methods of Applying Flooding (see below)











thread grinding (c) (d) drilling

#### **Effects of Cutting Fluids**

- Selection of a cutting fluid is based on:
- Workpiece material and machine tools
  - cutting fluids may react with machine tool components
  - thus, must clean machined parts from cutting fluids residue
- 2. Biological/Safety considerations
  - health concerns: mist, odors ⇒ skin, respiratory problems
  - progress in safe use of cutting fluids: e.g. dry machining
- 3. Environment
  - Fluids degrade over time (due to contamination) ⇒ effectiveness ↓
  - Fluid management involves recycling (treatment with additives and biocides), and disposal according to local laws

# Cutting Fluids: Near-dry and Dry Machining



- Trend since mid-1990's to reduce cutting fluid usage
- Thus, rise of near-dry machining; advantages:
  - reducing health, environmental hazards of cutting fluids
  - reducing cost of maintenance, recycling, disposing of CF's
  - improving surface quality
- Near-dry cutting/machining (NDM)
  - application of fine mist of air—fluid mixture containing very small amount of cutting fluid (« then used in flooding)
  - also called minimum-quantity lubrication (MQL)
- Dry machining
  - effective for turning, milling
  - here chips flushed from cutting zone by pressurized air
  - i.e. air serves limited cooling & flushing, but no lubrication