

PHYS 109 (General Physics)


# Textbook <br> College Physics A strategic Approach 

Third Edition
Knight/Jones/Field

Pearson


© 2016 Pearson Education, Ltd.


King Saud University, College of Science, Physics \& Astronomy Dept. Phys 109 (General Physics) © 2020

## Chapter 2 Motion in One Dimension



Chapter Goal: To describe and analyze linear motion.

## Units

- Scientists use a system of units called le Système International d'Unités, commonly referred to as SI Units.


## TABLE 1.1 Common SI units

## Quantity <br> Unit <br> Abbreviation

time
second
S
length
meter
m
mass
kilogram
kg

## Measurements and Significant Figures

- When we measure any quantity we can do so with only a certain precision.

- We state our knowledge of a measurement through the use of significant figures: digits that are reliably known.


## Reading Question 1.2

The quantity $2.67 \times 10^{3}$ has how many significant figures?
A. 1
B. 2
C. 3
D. 4
E. 5

## Summary: Applications

## Working with Numbers

In scientific notation, a number is expressed as a decimal number between 1 and 10 multiplied by a power of ten. In scientific notation, the diameter of the earth is $1.27 \times 10^{7} \mathrm{~m}$.

A prefix can be used before a unit to indicate a multiple of 10 or $1 / 10$. Thus we can write the diameter of the earth as $12,700 \mathrm{~km}$, where the k in km denotes 1000 .

Text: p. 56

| Some Greek letters |  | Prefixes for Powers of Ten |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Power | Prefix | Abbreviation |
| $\alpha$ | alpha | $10^{-15}$ | femto | f |
| $\beta$ | beta | $10^{-12}$ | pico | p |
| $\gamma$ | gamma |  |  |  |
| $\delta$ | delta | $10^{-9}$ | nano | n |
| $\varepsilon$ | epsilon | $10^{-6}$ | micro | $\mu$ |
| $\lambda$ | lambda | $10^{-3}$ | milli | m |
| $\mu$ | mu | $10^{-2}$ |  |  |
| $v$ | nu |  | centi | c |
| $\pi$ | pi | $10^{-1}$ | deci | d |
| $\rho$ | rho | $10^{3}$ | kilo | k |
| $\sigma$ | sigma | $10^{6}$ |  | M |
| $\tau$ | tau | 10 | mega | M |
| $\zeta$ | zeta | $10^{9}$ | giga | G |
|  |  | $10^{12}$ | tera | T |

## Physical Quantities

## Scalar

- Magnitude
- No direction


## Examples:

Length, mass, time electric current temperature, area, distance, speed, energy, density, power


- Magnitude
- Direction


## Examples:

Displacement, velocity, force, Acceleration, Momentum, weight impulse, pressure

## Velocity and Speed

- Motion at a constant speed in a straight line is called uniform motion.

During each second, the car moves
twice as far as the bicycle. Hence the
car is moving at a greater speed.


$$
\text { speed }=\frac{\text { distance traveled in a given time interval }}{\text { time interval }}
$$

Speed of an object in uniform motion

## Velocity and Speed

- Speed measures only how fast an object moves, but velocity tells us both an object's speed and its direction.

- This velocity is called the average velocity.


## Reading Question 1.4

If Samir walks 100 m to the right, then 200 m to the left, his net displacement vector
A. Points to the right.
B. Points to the left.
C. Has zero length.
D. Cannot tell without more information.

## Reading Question 1.1

What is the difference between speed and velocity?
A. Speed is an average quantity while velocity is not.
B. Velocity contains information about the direction of motion while speed does not.
C. Speed is measured in mph, while velocity is measured in $\mathrm{m} / \mathrm{s}$.
D. The concept of speed applies only to objects that are neither speeding up nor slowing down, while velocity applies to every kind of motion.
E. Speed is used to measure how fast an object is moving in a straight line, while velocity is used for objects moving along curved paths.

## Reading Question 1.5

## Velocity vectors point

A. In the same direction as displacement vectors.
B. In the opposite direction as displacement vectors.
C. Perpendicular to displacement vectors.
D. In the same direction as acceleration vectors.
E. Velocity is not represented by a vector.

## Chapter 2 Preview Looking Ahead

## Uniform Motion

Successive images of the rider are the same distance apart, so the velocity is constant. This is uniform motion.


You'll learn to describe motion in terms of quantities such as distance and velocity, an important first step in analyzing motion.

## Acceleration

A cheetah is capable of very high speeds but, more importantly, it is capable of a rapid change in speed-a large acceleration.


You'll use the concept of acceleration to solve problems of changing velocity, such as races, or predators chasing prey.

## Free Fall

When you toss a coin, the motion-both going up and coming down-is determined by gravity alone. We call this free fall.


How long does it take the coin to go up and come back down? This is the type of free-fall problem you'll learn to solve.

Text: p. 64

## Chapter 2 Preview Looking Back: Motion Diagrams

- As you saw in Section 1.5, a good first step in analyzing motion is to draw a motion diagram, marking the position of an object in subsequent times.

- In this chapter, you'll learn to create motion diagrams for different types of motion along a line. Drawing pictures like this is a good staring point for solving problems.


## Section 2.1 Describing Motion

## Representing Position

- We will use an $\boldsymbol{x}$-axis to analyze horizontal motion and motion on a ramp, with the positive end to the right.
- We will use a $\boldsymbol{y}$-axis to analyze vertical motion, with the positive end up.


Position to right of origin


Position
above origin


Position to left of origin


Position below origin

## Representing Position

The motion diagram of a student walking to school and a

- Every dot in the motion diagram of Figure 2.2 represents the student's position at a particular time.
- Figure 2.3 shows the student's motion shows the student's position as a graph of $x$ versus $t$.

The dots show the student's
$x(\mathrm{~m})$ positions at all times in the table.


## From Position to Velocity

- On a position-versus-time graph, a faster speed corresponds to a steeper slope.
slope of graph $=\frac{\text { rise }}{\text { run }}=\frac{\Delta x}{\Delta t}$
- The slope of an object's position-versus-time graph is the object's velocity at that point in the motion.



## From Position to Velocity

- We can deduce the velocity-versus-time graph from the position-versus-time graph.
- The velocity-versus-time graph is yet another way to represent an object's motion.


## Quick Check 2.2

- Here is a motion diagram of a car moving along a straight road:

- Which velocity-versus-time graph matches this motion diagram?

A.

B.

C.

D.
E. None of the above.


## Quick Check 2.3

- Here is a motion diagram of a car moving along a straight road:

- Which velocity-versus-time graph matches this motion diagram?

A.

B.

C.

D.

E.


## Quick Check 2.4

A graph of position versus time for a basketball player moving down the court appears as follows:


Which of the following velocity graphs matches the position graph?

A.

B.

C.

D.

## Example 2.2 Analyzing a car's position graph

FIGURE 2.11 gives the position-versus-time graph of a car.
a. Draw the car's velocity-versus-time graph.
b. Describe the car's motion in words.


PREPARE Figure 2.11 is a graphical representation of the motion. The car's position-versus-time graph is a sequence of three straight lines. Each of these straight lines represents uniform motion at a constant velocity. We can determine the car's velocity during each interval of time by measuring the slope of the line.

## Example 2.2 Analyzing a car's position graph (cont.)

## SOLVE

a. From $t=0 \mathrm{~s}$ to $t=2 \mathrm{~s}(\Delta t=2 \mathrm{~s})$ the car's displacement is $\Delta x=-4 \mathrm{~m}-0 \mathrm{~m}=-4 \mathrm{~m}$. The velocity during this interval is

$$
v_{x}=\frac{\Delta x}{\Delta t}=\frac{-4 \mathrm{~m}}{2 \mathrm{~s}}=-2 \mathrm{~m} / \mathrm{s}
$$

The car's position does not change from $t=2 \mathrm{~s}$ to $t=4 \mathrm{~s}(\Delta x=0 \mathrm{~m})$, so $V_{X}=0 \mathrm{~m} / \mathrm{s}$. Finally, the displacement between $t=4 \mathrm{~s}$ and $t=6 \mathrm{~s}(\Delta t=2 \mathrm{~s})$ is $\Delta x=10 \mathrm{~m}$. Thus the velocity during this interval is

$$
v_{x}=\frac{10 \mathrm{~m}}{2 \mathrm{~s}}=5 \mathrm{~m} / \mathrm{s}
$$



These velocities are represented graphically in FIGURE 2.12.

## Example 2.2 Analyzing a car's position graph (cont.)

## SOLVE

b. The velocity-versus-time graph of Figure 2.12 shows the motion in a way that we can describe in a straightforward manner: The car backs up for 2 s at $2 \mathrm{~m} / \mathrm{s}$, sits at rest for 2 s , then drives forward at $5 \mathrm{~m} / \mathrm{s}$ for 2 s .

ASSESS Notice that the velocity graph and the position graph look completely different. They should! The value of the velocity graph at any instant of time equals the slope of the position graph. Since the position graph is made up of segments of constant slope, the velocity graph should be made up of segments of constant value, as it is. This gives us confidence that the graph we have drawn is correct.

## From Velocity to Position

- We can deduce the position-versus-time graph from the velocity-versustime graph.
- The sign of the velocity tells us whether the slope of the position graph is positive or negative.
- The magnitude of the velocity tells us how steep the slope is.



## Quick Check 2.6

- A graph of velocity versus time for a hockey puck shot into a goal appears as follows:

- Which of the following position graphs matches the velocity graph?

A.

B.

C.

D.


## Section 2.2 Uniform Motion

## Uniform Motion

- Straight-line motion in which equal displacements occur during any successive equal-time intervals is called uniform motion or constantvelocity motion.
- An object's motion is uniform if and only if its position-versus-time graph is a straight line.

Uniform motion


## Equations of Uniform Motion

- The velocity of an object in uniform motion tells us the amount by which its position changes during each second.

$$
\begin{gathered}
v_{x}=\frac{\text { rise }}{\text { run }}=\frac{\Delta x}{\Delta t}=\frac{x_{\mathrm{f}}-x_{\mathrm{i}}}{t_{\mathrm{f}}-t_{\mathrm{i}}} \\
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{x} \Delta t
\end{gathered}
$$

Position equation for an object in uniform motion ( $v_{x}$ is constant)

$$
\Delta x=v_{x} \Delta t
$$

- The displacement $\Delta x$ is proportional to the time interval $\Delta t$.


## Quick Check 2.8

- Here is a position graph of an object:
- At $t=1.5 \mathrm{~s}$, the object's velocity is

- $40 \mathrm{~m} / \mathrm{s}$
- $20 \mathrm{~m} / \mathrm{s}$
- $10 \mathrm{~m} / \mathrm{s}$
- $-10 \mathrm{~m} / \mathrm{s}$
- None of the above


## Section 2.3 Instantaneous Velocity

## Instantaneous Velocity

- For one-dimensional motion, an object changing its velocity is either speeding up or slowing down.
- An object's velocity-a speed and a direction-at a specific instant of time $t$ is called the object's instantaneous velocity.
- From now on, the word "velocity" will always mean instantaneous velocity.



## Finding the Instantaneous Velocity



- If the velocity changes, the position graph is a curved line. But we can compute a slope at a point by considering a small segment of the graph. Let's look at the motion in a very small time interval right around $t=0.75 \mathrm{~s}$. This is highlighted with a circle, and we show a closeup in the next graph.


## Finding the Instantaneous Velocity



- In this magnified segment of the position graph, the curve isn't apparent. It appears to be a line segment. We can find the slope by calculating the rise over the run, just as before:

$$
v_{X}=(1.6 \mathrm{~m}) /(0.20 \mathrm{~s})=8.0 \mathrm{~m} / \mathrm{s}
$$

- This is the slope at $t=0.75 \mathrm{~s}$ and thus the velocity at this instant of time.


## Finding the Instantaneous Velocity

- Graphically, the slope of the curve at a point is the same as the slope of a straight line drawn tangent to the curve at that point. Calculating rise over run for the tangent line, we get


$$
v_{x}=(8.0 \mathrm{~m}) /(1.0 \mathrm{~s})=8.0 \mathrm{~m} / \mathrm{s}
$$

- This is the same value we obtained from the closeup view. The slope of the tangent line is the instantaneous velocity at that instant of time.


## Quick Check 2.5

- The slope at a point on a position-versus-time graph of an object is
- The object's speed at that point.
- The object's velocity at that point.
- The object's acceleration at that point.
- The distance traveled by the object to that point.
- I am not sure.


## QuickCheck 2.13

- A car moves along a straight stretch of road. The following graph shows the car's position as a function of time:

- At what point (or points) do the following conditions apply?
- The displacement is zero.
- The speed is zero.
- The speed is increasing.
- The speed is decreasing.


## Section 2.4 Acceleration

## Acceleration

- We define a new motion concept to describe an object whose velocity is changing.
- The ratio of $\Delta v_{x} / \Delta t$ is the rate of change of velocity.
- The ratio of $\Delta v_{x} / \Delta t$ is the slope of a velocity-versus-time graph.

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}
$$

## Definition of acceleration as the rate of change of velocity

## Representing Acceleration

- We can find an acceleration graph from a velocity graph.
(a)



## The Sign of the Acceleration

An object can move right or left (or up or down) while either speeding up or slowing down. Whether or not an object that is slowing down has a negative acceleration depends on the direction of motion.

The object is moving to the right $\left(v_{x}>0\right)$ and speeding up.


The object is moving to the left $\left(v_{x}<0\right)$ and slowing down.


## The Sign of the Acceleration (cont.)

An object can move right or left (or up or down) while either speeding up or slowing down. Whether or not an object that is slowing down has a negative acceleration depends on the direction of motion.


## Quick Check 2.12

- A particle has velocity $\vec{v}_{1}$ as it moves from point 1 to point 2. The acceleration is shown. What is its velocity vector $\vec{v}_{2}$ as it moves away from point 2 ?

A.
B.
C.
D.
E.


## Quick Check 2.14



- The motion diagram shows a particle that is slowing down. The sign of the position $x$ and the sign of the velocity $v_{x}$ are:
- Position is positive, velocity is positive.
- Position is positive, velocity is negative.
- Position is negative, velocity is positive.
- Position is negative, velocity is negative.


## Example Problem

A ball moving to the right traverses the ramp shown below. Sketch a graph of the velocity versus time, and, directly below it, using the same scale for the time axis, sketch a graph of the acceleration versus time.




## Quick Check 2.15



- The motion aiagram snows a particie unat is siowing down. The sign of the acceleration $a_{x}$ is:
- Acceleration is positive.
- Acceleration is negative.


## Quick Check 2.22

- Here is a motion diagram of a car speeding up on a straight road:

- The sign of the acceleration $a_{X}$ is
- Positive.
- Negative.
- Zero.


## Quick Check 2.25

- Which velocity-versus-time graph goes with this acceleration graph?


A.

B.

C.

D.

E.


## Section 2.5 Motion with Constant Acceleration

## Motion with Constant Acceleration

- We can use the slope of the graph in the velocity graph to determine the acceleration of the rocket.

$$
a_{y}=\frac{\Delta v_{y}}{\Delta t}=\frac{27 \mathrm{~m} / \mathrm{s}}{1.5 \mathrm{~s}}=18 \mathrm{~m} / \mathrm{s}^{2}
$$




## Constant Acceleration Equations

- We can use the acceleration to find $\left(v_{x}\right)_{\mathrm{f}}$ at a later time $t_{\mathrm{f}}$.

$$
\begin{gathered}
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{\left(v_{x}\right)_{\mathrm{f}}-\left(v_{x}\right)_{\mathrm{i}}}{\Delta t} \\
\left(v_{x}\right)_{\mathrm{f}}=\left(v_{x}\right)_{\mathrm{i}}+a_{x} \Delta t
\end{gathered}
$$

## Velocity equation for an object with constant acceleration

- We have expressed this equation for motion along the $x$-axis, but it is a general result that will apply to any axis.


## Constant Acceleration Equations

- The velocity-versus-time graph for constant-acceleration motion is a straight line with value $\left(v_{x}\right)_{\mathrm{i}}$ at time $t_{\mathrm{i}}$ and slope $a_{x}$.
- The displacement $\Delta x$ during a time interval $\Delta t$ is the area under the velocity-versustime graph shown in the shaded area of the figure.

The displacement $\Delta x$ is the area under this curve: the sum of the areas of a triangle . .


## Constant Acceleration Equations



- The shaded area can be subdivided into a rectangle and a triangle. Adding these areas gives

$$
x_{\mathrm{f}}=x_{\mathrm{i}}+\left(v_{x}\right)_{\mathrm{i}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2}
$$

Position equation for an object with constant acceleration

## Constant Acceleration Equations

- Combining Equation 2.11 with Equation 2.12 gives us a relationship between displacement and velocity:

$$
\left(v_{x}\right)_{\mathrm{f}}^{2}=\left(v_{x}\right)_{\mathrm{i}}^{2}+2 a_{x} \Delta x
$$

## Relating velocity and displacement for constant-acceleration motion

- $\Delta x$ in Equation 2.13 is the displacement (not the distance!).


## Constant Acceleration Equations

## For motion with constant acceleration:

- Velocity changes steadily:

- The position changes as the square of the time interval:

- We can also express the change in velocity in terms of distance, not time:


Text: p. 43

## Example 2.8 Coming to a stop

As you drive in your car at $15 \mathrm{~m} / \mathrm{s}$ (just a bit under 35 mph ), you see a child's ball roll into the street ahead of you. You hit the brakes and stop as quickly as you can. In this case, you come to rest in 1.5 s . How far does your car travel as you brake to a stop?

PREPARE The problem statement gives us a description of motion in words. To help us visualize the situation, FIGURE 2.30 illustrates the key features of the motion with a motion diagram and a velocity graph. The graph is based on the car slowing from $15 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 1.5 s .



## Example 2.8 Coming to a stop (cont.)

SOLVE We've assumed that your car is moving to the right, so its initial velocity is $\left(v_{X}\right)_{\mathrm{i}}=+15 \mathrm{~m} / \mathrm{s}$. After you come to rest, your final velocity is $\left(v_{X}\right)_{\mathrm{f}}=0 \mathrm{~m} / \mathrm{s}$. We use the definition of acceleration from Synthesis 2.1:

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{\left(v_{x}\right)_{\mathrm{f}}-\left(v_{x}\right)_{\mathrm{i}}}{\Delta t}=\frac{0 \mathrm{~m} / \mathrm{s}-15 \mathrm{~m} / \mathrm{s}}{1.5 \mathrm{~s}}=-10 \mathrm{~m} / \mathrm{s}^{2}
$$

An acceleration of $-10 \mathrm{~m} / \mathrm{s}^{2}$ (really $-10 \mathrm{~m} / \mathrm{s}$ per second) means the car slows by $10 \mathrm{~m} / \mathrm{s}$ every second.

Now that we know the acceleration, we can compute the distance that the car moves as it comes to rest using the second constant acceleration equation in Synthesis 2.1:

$$
\begin{aligned}
x_{\mathrm{f}}-x_{\mathrm{i}} & =\left(v_{x}\right)_{\mathrm{i}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \\
& =(15 \mathrm{~m} / \mathrm{s})(1.5 \mathrm{~s})+\frac{1}{2}\left(-10 \mathrm{~m} / \mathrm{s}^{2}\right)(1.5 \mathrm{~s})^{2}=11 \mathrm{~m}
\end{aligned}
$$

## Section 2.7 Free Fall

## Free Fall

- If an object moves under the influence of gravity only, and no other forces, we call the resulting motion free fall.
- Any two objects in free fall, regardless of their mass, have the same acceleration.
- On the earth, air resistance is a factor. For now we will restrict our attention to situations in which air resistance can be ignored.


Apollo 15 lunar astronaut David Scott performed a classic experiment on the moon, simultaneously dropping a hammer and a feather from the same height. Both hit the ground at the exact same time-something that would not happen in the atmosphere of the earth!

## Free Fall

| (a)For an object <br> dropped from | (b) |
| :--- | :--- | :--- |

- The figure shows the motion diagram for an object that was released from rest and falls freely. The diagram and the graph would be the same for all falling objects.


## Free Fall

- The free-fall acceleration always points down, no matter what direction an object is moving.
- Any object moving under the influence of gravity only, and no other force, is in free fall.
$\vec{a}_{\text {free fall }}=\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right.$, vertically downward $)$
Standard value for the acceleration of an object in free fall


## Free Fall

- $g$, by definition, is always positive. There will never be a problem that uses a negative value for $g$.
- Even though a falling object speeds up, it has negative acceleration $(-g)$.
- Because free fall is motion with constant acceleration, we can use the kinematic equations for constant acceleration with $a_{y}=-g$.
- $g$ is not called "gravity." $g$ is the free-fall acceleration.
- $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ only on earth. Other planets have different values of $g$.
- We will sometimes compute acceleration in units of $g$.


## Quick Check 2.26

- A ball is tossed straight up in the air. At its very highest point, the ball's instantaneous acceleration $a_{y}$ is
- Positive.
- Negative.
- Zero.


## Quick Check 2.27

- An arrow is launched vertically upward. It moves straight up to a maximum height, then falls to the ground. The trajectory of the arrow is noted. At which point of the trajectory is the arrow's acceleration the greatest? The least? Ignore air resistance; the only force acting is gravity.



## Quick Check 2.28

- An arrow is launched vertically upward. It moves straight up to a maximum height, then falls to the ground. The trajectory of the arrow is noted. Which graph best represents the vertical velocity of the arrow as a function of time? Ignore air resistance; the only force acting is gravity.




C


D


E

## Example 2.14 Analyzing a rock's fall

A heavy rock is dropped from rest at the top of a cliff and falls 100 m before hitting the ground. How long does the rock take to fall to the ground, and what is its velocity when it hits?

PREPARE FIGURE 2.36 shows a visual overview with all necessary data. We have placed the origin at the ground, which makes $y_{\mathrm{i}}=100 \mathrm{~m}$.


$$
\begin{aligned}
& \frac{\text { Known }}{y_{i}=100 \mathrm{~m}} \\
& y_{f}=0 \mathrm{~m} \\
& \left(\nu_{y}\right)_{i}=0 \mathrm{~m} / \mathrm{s} \\
& t_{i}=0 \mathrm{~s} \\
& a_{y}=-g=-9.80 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { Find } \\
& t_{f} \text { and }\left(v_{y}\right)_{f}
\end{aligned}
$$

## Example 2.14 Analyzing a rock's fall (cont.)

SOLVE Free fall is motion with the specific constant acceleration $a_{y}=-g$. The first question involves a relation between time and distance, a relation expressed by the second equation in Synthesis 2.1. Using $\left(v_{y}\right)_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}$ and $t_{\mathrm{i}}=0 \mathrm{~s}$, we find

$$
y_{\mathrm{f}}=y_{\mathrm{i}}+\left(v_{y}\right)_{\mathrm{i}} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}=y_{\mathrm{i}}-\frac{1}{2} g(\Delta t)^{2}=y_{\mathrm{i}}-\frac{1}{2} g t_{\mathrm{t}}^{2}
$$

We can now solve for $t_{\mathrm{f}}$ :

$$
t_{\mathrm{f}}=\sqrt{\frac{2\left(y_{\mathrm{i}}-y_{\mathrm{f}}\right)}{g}}=\sqrt{\frac{2(100 \mathrm{~m}-0 \mathrm{~m})}{9.80 \mathrm{~m} / \mathrm{s}^{2}}}=4.52 \mathrm{~s}
$$

Now that we know the fall time, we can use the first kinematic equation to find $\left(v_{y}\right)_{\mathrm{f}}$ :

$$
\begin{aligned}
\left(v_{y}\right)_{\mathrm{f}} & =\left(v_{y}\right)_{\mathrm{i}}-g \Delta t=-g t_{\mathrm{f}}=-\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(4.52 \mathrm{~s}) \\
& =-44.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

## Example 2.14 Analyzing a rock's fall (cont.)

ASSESS Are the answers reasonable? Well, 100 m is about 300 feet, which is about the height of a 30 -floor building. How long does it take something to fall 30 floors? Four or five seconds seems pretty reasonable. How fast would it be going at the bottom? Using an approximate version of our conversion factor $1 \mathrm{~m} / \mathrm{s} \approx 2 \mathrm{mph}$, we find that $44.3 \mathrm{~m} / \mathrm{s} \approx 90 \mathrm{mph}$. That also seems like a pretty reasonable speed for something that has fallen 30 floors. Suppose we had made a mistake. If we misplaced a decimal point we could have calculated a speed of $443 \mathrm{~m} / \mathrm{s}$, or about 900 mph ! This is clearly not reasonable. If we had misplaced the decimal point in the other direction, we would have calculated a speed of $4.3 \mathrm{~m} / \mathrm{s} \approx 9 \mathrm{mph}$. This is another unreasonable result, because this is slower than a typical bicycling speed.

## Summary: Important Concepts

Velocity is the rate of change of position:

$$
v_{x}=\frac{\Delta x}{\Delta t}
$$

Acceleration is the rate of change of velocity:

$$
a_{x}=\frac{\Delta v_{x}}{\Delta t}
$$

The units of acceleration are $\mathrm{m} / \mathrm{s}^{2}$.
An object is speeding up if $v_{x}$ and $a_{x}$ have the same sign, slowing down if they have opposite signs.

## Summary: Important Concepts

## A position-versus-time graph plots position on the vertical axis against time on the horizontal axis.



## Summary: Applications

## Uniform motion

An object in uniform motion has a constant velocity. Its velocity graph is a horizontal line; its position graph is linear.



Kinematic equation for uniform motion:

$$
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{x} \Delta t
$$

Uniform motion is a special case of constantacceleration motion, with $a_{x}=0$.

## Summary: Applications

## Motion with constant acceleration

An object with constant acceleration has a constantly changing velocity. Its velocity graph is linear; its position graph is a parabola.



Kinematic equations for motion with constant acceleration:

$$
\begin{aligned}
& \left(v_{x}\right)_{\mathrm{f}}=\left(v_{x}\right)_{\mathrm{i}}+a_{x} \Delta t \\
& x_{\mathrm{f}}=x_{\mathrm{i}}+\left(v_{x}\right)_{\mathrm{i}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \\
& \left(v_{x}\right)_{\mathrm{f}}^{2}=\left(v_{x}\right)_{\mathrm{i}}^{2}+2 a_{x} \Delta x
\end{aligned}
$$

## Summary: Applications

## Free fall

Free fall is a special case of constantacceleration motion. The acceleration has magnitude $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ and is always directed vertically downward whether an object is moving up or down.


Text: p. 89

## Chapter 2 Preview Stop to Think

A bicycle is moving to the left with increasing speed. Which of the following motion diagrams illustrates this motion?


## Reading Question 2.1

The slope at a point on a position-versus-time graph of an object is the
A. Object's speed at that point.
B. Object's average velocity at that point.
C. Object's instantaneous velocity at that point.
D. Object's acceleration at that point.
E. Distance traveled by the object to that point.

## Reading Question 2.2

Which of the following is an example of uniform motion?
A. A car going around a circular track at a constant speed.
B. A person at rest starts running in a straight line in a fixed direction.
C. A ball dropped from the top of a building.
D. A hockey puck sliding in a straight line at a constant speed.

## Reading Question 2.4

If an object is speeding up,
A. Its acceleration is positive.
B. Its acceleration is negative.
C. Its acceleration can be positive or negative depending on the direction of motion.

