
Chapter 2

Relationships between classes Using

UML

KSU-CCIS-CS

Objectives: What is UML?

• ``UML is a standard language for writing software blueprints. The UML
may be used to visualize, specify, construct and document the artifacts
of a software intensive system''

• Defined semantics for each of the graphical symbols

• Allows for unambiguous specification and for inspection of

requirements and designs

• Allows tools to directly generate code from diagrams - but

programmers still has to do some work

• Provides documentation of products, so allowing auditing and

facilitating management

KSU-CCIS-CS

1. UML Object Models: Classes

2. Association

3. Composition

4. Aggregation

5. Examples

OUTLINE

KSU-CCIS-CS

1. UML Object Models:

Classes

Class name

Attributes

Methods

Class Name
Should be descriptive of the class and

capitalized in the first letter

Attributes
The named properties of the class. Can be

typed, possibly with default values

Methods
Services offered by the class. Methods can

be typed e.g. parameter types and return

types specified.

KSU-CCIS-CS

Association, Aggregation, and Composition

Associations

UML diagrams show a collection of named boxes - indicating classes or

types of object. The boxes have lines connecting them called links. Each

link is called an association and should model some relationship or

connection between the classes. Associations also play roles in classes that

are often given special names.

Company

- name: String

- contactPerson: Client

- employees: Client[]

2. UML Object Models:

Example:

Classes can contain references to each

other. The Company class has two attributes

that reference the Client class.

KSU-CCIS-CS

Although this is perfectly correct, it is sometimes more expressive to show the

attributes as associations.

Association, Aggregation, and Composition

Associations

Client

- lastName: String

- firstName: String

- email: String

Company

- name: String

contactPerson

1 1

employees

1 0..*

UML Object Models:

KSU-CCIS-CS

The above two associations have the same meaning as the attributes in the

old version of the Contact class.

The first association (the top one) represents the old contactPerson

attribute. There is one contact person in a single Company.

The multiplicity of the association is one to one meaning that for every

Companythere is one and only one contactPerson and for each

contactPerson there is one Company.

Association, Aggregation, and Composition

Associations

UML Object Models:

KSU-CCIS-CS

The first association (the top one) represents the old contactPerson

attribute. There is one contact person in a single Company.

The multiplicity of the association is one to one meaning that for every

Companythere is one and only one contactPerson and for each

contactPerson there is one Company.

In the bottom association there are zero or many employees for each

company.

Associations

Client

- lastName: String

- firstName: String

- email: String

Company

- name: String

contactPerson

1 1

employees

1 0..*

Association, Aggregation, and Composition

UML Object Models:

KSU-CCIS-CS

0 zero

1 one

1..* one or many

1..2, 10..*
one, two or ten and above

but not three through nine

Associations

Multiplicities can be anything you specify. Some examples are shown:

Association, Aggregation, and Composition

UML Object Models:

KSU-CCIS-CS

3. UML Object Models: Aggregation, and Composition

UML provides several notations that can express the physical construction of

a class. The filled in diamond is often used when a class contain other objects

within them as parts or components. The composition association is

represented by the solid diamond.

Here are two examples: Period is composed of Time and Day.

Period

t: Time [2]

d: Day [5]

Period

Time Day

t 2 d 5

We can use the dark diamond to indicate that the class possesses the components in

the sense of controlling whether they exist of not. The filled in diamond indicates that

the deletion of an object may delete its components as well.

Composition

KSU-CCIS-CS

4. UML Object Models: Aggregation, and Composition

Aggregation

We can also show that a class has some parts and yet they have an independent

existence. Example: In the computer world a page on the world Wide Web can

use a hypertext reference to point to another resource -- deleting the page does

not effect the other page. This association is called aggregation. is represented by

the hollow diamond.

Here is an example showing that a Restaurant will have a number of clients who

are People and the the clients exist whether or not they are clients of the

Restaurant:

KSU-CCIS-CS

UML Object Models: Aggregation, and Composition

Example 1:

ProductGroup is composed of Products. This means that if a ProductGroup is

destroyed, the Products within the group are destroyed as well.

PurchaseOrder is an aggregate of Products. If a PurchaseOrder is destroyed, the

Products still exist.

If you have trouble remembering the difference between composition and

aggregation, just think of the alphabet. Composition means destroy and the letters

'c' and 'd' are next to each other.

Product
1..*

1

1

1..*

PRP

PDP
ProductGroup

ProductGroup(in size:int, …)

addPrd(in P: Product)

PurchaseOrder

PurchaseOrder(in size:int, …)

addPrd(in P: Product)

Product()

Product(in P:Product)

KSU-CCIS-CS

UML Object Models: Aggregation, and Composition

How to Implement Aggregation?

public class PurchaseOrder

{

private Product PRP [];

private int nprp; // number of current

product in the array.

…..

public PurchaseOrder (int size, …)

{

PRP = new Product[size];

nprp=0;

….

}

……

}

How to Implement Composition?

public class ProductGroup

{

private Product PDP [];

private int npdp; // number of current

product in the array.

…..

public ProductGroup (int size, …)

{

PDP = new Product[size];

npdp=0;

….

}

……

}

KSU-CCIS-CS

UML Object Models: Aggregation, and Composition

Aggregation: How to add a new product

public class PurchaseOrder

{

private Product PRP [];

private int nprp; // number of current

product in the array.

…..

public void addPrd (Product P)

{

PRP[nprp] = P;

nprp++;

}

……

}

public class ProductGroup

{

private Product PDP [];

private int npdp; // number of current

product in the array.

…..

public void addPrd (Product P)

{

PDP[npdp] = new Product(P);

nprp++;

}

……

}

Composition: How to add a new product

KSU-CCIS-CS

Example 2:

Department

Course

Section

StudentTeacher

-1
-*

-1

-*

-1

-*

-1

0..3

-1 -*

-

1

- 0..*

UML Object Models: Aggregation, and Composition

KSU-CCIS-CS

The following Java code shows just how the links between the different objects can be

implemented in Java. Note that this code just shows the links. It does not show

constructors, or any other methods what would be required to actually use these objects.

Example 2:

/*

* Student.java -

*/

public class Student

{

private String name;

private String id;

public void copyStudent(Student st)

{

name= st.name;

id= st.id ;

}

// ...

}

/*

* Section.java -

*/

public class Section

{

private String sectionName;

private int capacity;

private int currentNbStudents;

private Student[] stud;

….

public void addStudent(Student s)

{

stud[currentNbStudents]=s;

currentNbStudents ++;

}

// ...

}

UML Object Models: Aggregation, and Composition

KSU-CCIS-CS

/*

* Course.java -

*/

public class Course

{

private String

courseName;

private int nbSection;

private Section[] sect;

// ...

}

/*

* Teacher.java -

*/

public class Teacher

{

private String

teacherName;

private String Id;

private Section[3] sect;

// ...

}

/*

* Teacher.java -

*/

public class Department

{

private String

departName;

private Student[] stud;

private Course[] csc;

private Teacher[] teach;

// ...

}

Example 2:

UML Object Models: Aggregation, and Composition

KSU-CCIS-CS

Example 3:
UML Object Models: Aggregation, and Composition

+Car(in n : string, in d : string, in s : int, in y : int, in size : int)

+display()

+isFull() : bool

+copyCar(in ca : Car)

+addElement(in el : CarElements) : bool

+PriceCar() : double

+...........(in)

-seatNb : int

-year : int

-ncel : int

Car

+CarElements(in c : string, in p : double)

+CarElement(in E : CarElements)

+display()

+.....(in)

-code : string

-price : double

CarElements

1

*

+KsuCars(in size : int)

+display()

+isEmpty() : bool

+searchCar(in ce : string) : int

+getCar(in nm : string) : Car

+AveragePrice(in y : int) : double

+.........(in)

+remove(in s : string) : bool

-nbc : int

KsuCars

1

*

- name : string

-id : string

KSU-CCIS-CS

Question: Implement all the classes with all their methods using the following descriptions.

Description of the different classes:

Class CarElements:

 The method display () displays the code and the price.

 + …….. (in ……..) : if you need an other methods in this class you can add it.

You can’t add another constructor.

Class Car:

 name

• id

• seatNb : Number of seats

 year : Production year of car

 ncel : number of CarElements object currently in an object of the class Car.

 And other attribute(s) deduced from the UML diagram.

 display (): Displays all the attributes of an object Car.

 addElement (CarElements el): This method receives a CarElements object and adds it to the Car object.

 priceCar(): Returns the sum of the CarElements price in an object of the class Car.

+ …….. (in ……..) : if you need an other methods in this class you can add it.

Class KsuCars:

 nbc : number of Car currently in an object of the class KsuCar.

 And other attribute(s) deduced from the UML diagram.

 display (): Displays all the attributes of an object KsuCars.

 search (String ce): This method receives a String representing the name of a Car object and returns the array index of the car

object.

 getCar (String nm): This method receives a String representing the id of a Car object and returns the Car object if it’s exist.

 removeCar (String s): Removes a Car according to its name. It will return a value true if the operation has been completed

successfully, or false if not.

 AveragePrice(int y): Calculates the average price of all car in an object of class KsuCars that produced after the year y.

 + …….. (in ……..) : if you need an other methods in this class you can add it.

