

AGE-1320 Section 1, CRN: 320/321/378 Section 2, CRN: 379/381/380

First Semester 1447 H (Fall 2025) – 2(1,1,2) "Introduction to Manufacturing"

Saturday, October 25, 2025 (03/05/1447H)

Turning Exercise + ANSWERS

Name:	Student Number:
AHMED M. EL-SHERBEENY, PHD	4

Material-Removal Rate in Turning

A 150-mm-long, 12.5-mm-diameter 304 stainless steel rod is being reduced in diameter to 12.0 mm by turning on a lathe. The spindle rotates at N = 400 rpm, and the tool is travelling at an axial speed of 200 mm/min. Calculate the following:

- a) cutting speed
- b) material-removal rate
- c) cutting time

Given:

- Workpiece material: 304 stainless steel
- Turning on a lathe process
- $l = 150 \, mm$
- $D_o = 12.5 \, mm$
- $D_f = 12.0 \ mm$
- $N = 400 \, rev/min$
- $v = 200 \, mm/min$ (note this is feed rate, NOT cutting speed, V)

Solution:

a) cutting speed, $V = \pi D_{avg}N$

$$D_{avg} = \frac{D_o + D_f}{2} = \frac{12.5 \ mm + 12.0 \ mm}{2} = 12.25 \ mm$$

$$\Rightarrow V = \pi D_{avg} N = (\pi \ rad/rev)(12.25 \ mm)(400 \ rev/min)$$
$$= 15393.80 \ mm/min$$

$$V = 15.4 m/min$$

Note,
$$V_{max} = \pi D_o N = (\pi \ rad/rev)(12.5 \ mm)(400 \ rev/min)$$

= 15707.96 mm/min = 15.7 m/min

b) material-removal rate, MRR = dfV

depth of cut,
$$d = \frac{D_o - D_f}{2} = \frac{12.5 \text{ mm} - 12.0 \text{ mm}}{2} = 0.25 \text{ mm}$$

$$feed, f = \frac{v}{N} = \frac{200 \text{ mm/min}}{400 \text{ rev/min}} = 0.50 \text{ mm/rev}$$

$$\Rightarrow$$
 MRR = dfV = (0.25 mm)(0.50 mm)(15393.80 mm/min)
= 1924.2 mm³/min

$$MRR = 1924 \, mm^3/min$$

c) cutting time, $t = \frac{l}{fN}$

 $length\ of\ cut, l=150\ mm$

$$\Rightarrow t = \frac{l}{fN} = \frac{150 \text{ mm}}{(0.50 \text{ mm/rev})(400 \text{ rev/min})} = 0.75 \text{ min}$$

$$t = 0.75 min = 45.0 s$$