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Sample Problem 2/5

The curvilinear motion of a particle is defined by v, = 50 — 16t and y =
100 — 4¢2, where v, is in meters per second, y is in meters, and # is in seconds.
It is also known that x = 0 when ¢ = 0. Plot the path of the particle and deter-
mine its velocity and acceleration when the position y = 0 is reached.

Solution. The x-coordinate is obtained by integrating the expression for v,,
and the x-component of the acceleration is obtained by differentiating v,. Thus,

X t
l:fdx=fvxdt] f dx=f (50 — 16¢) dt x =50t — 82 m
0 0

la, =1, a, = g; (50 — 16¢) a, = —16 m/s?

The y-components of velocity and acceleration are

[, = 71 v,= 910047 v, =-8tmss
N _d = 2
la, = 0,] ay= . (-8 a, = —8m/s

We now calculate corresponding values of x and y for various values of # and
plot x against y to obtain the path as shown.
Wheny = 0,0 = 100 — 4¢%, so t = 5 s. For this value of the time, we have

v, = 50 — 16(5) = —30 m/s
v, = —8(5) = —40 m/s

v = J/(—30)% + (—40)% = 50 m/s
a=J(-16)2 + (-8)? = 17.89 m/s?

The velocity and acceleration components and their resultants are shown on the
separate diagrams for point A, where y = 0. Thus, for this condition we may
write

v = —30i — 40j m/s Ans.
a = —16i — 8j m/s? Ans.

1004=2 S
1 \\2
80 N
60 3
|
£
40 f/{
20 /’
0 t=5s /
0 20 40 A 60 80
X, m
Path Path
/ /
/ /
14 )
/
r,==30m/s /

a =17.89 m/s*

) ___ Yu,=-40m/s
v=50 m/s :

Helpful Hint

We observe that the velocity vector lies
along the tangent to the path as it
should, but that the acceleration vector
is not tangent to the path. Note espe-
cially that the acceleration vector has a
component that points toward the in-
side of the curved path. We concluded
from our diagram in Fig. 2/5 that it is
impossible for the acceleration to have a
component that points toward the out-
side of the curve.
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Sample Problem 2/15

In the pulley configuration shown, cylinder A has a downward velocity of 0.3
m/s. Determine the velocity of B. Solve in two ways.

Solution (I). The centers of the pulleys at A and B are located by the coordi-
nates y, and yp measured from fixed positions. The total constant length of cable
in the pulley system is

L = 3yp + 2y, + constants

where the constants account for the fixed lengths of cable in contact with the cir-
cumferences of the pulleys and the constant vertical separation between the two
upper left-hand pulleys. Differentiation with time gives

0=3yg+ 2y,
Substitution of vy = ¥, = 0.3 m/s and vz = yg gives
0 = 3(vg) + 2(0.3) or vg = —02m/s Ans.

Solution (ll). An enlarged diagram of the pulleys at A, B, and C is shown. Dur-
ing a differential movement ds, of the center of pulley A, the left end of its hori-
zontal diameter has no motion since it is attached to the fixed part of the cable.
Therefore, the right-hand end has a movement of 2ds, as shown. This move-
ment is transmitted to the left-hand end of the horizontal diameter of the pulley
at B. Further, from pulley C with its fixed center, we see that the displacements
on each side are equal and opposite. Thus, for pulley B, the right-hand end of the
diameter has a downward displacement equal to the upward displacement dsp of
its center. By inspection of the geometry, we conclude that

2dsA = 3dSB or dSB — gdsA
Dividing by dt gives
lug| = gUA = :2,;(0,3) = (0.2 m/s (upward) Ans.

(b)

Helpful Hints

() We neglect the small angularity of
the cables between B and C.

(2) The negative sign indicates that the
velocity of B 18 upward.

L] L] £LULO CliapLlel £ = Cul viiiceal
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Sample Problem 2/16

The tractor A is used to hoist the bale B with the pulley arrangement
shown. If A has a forward velocity v,, determine an expression for the upward
velocity vy of the bale in terms of x.

Solution. We designate the position of the tractor by the coordinate x and the
position of the bale by the coordinate y, both measured from a fixed reference.
The total constant length of the cable is

L=2h-y) +1=2h—y) + JhZ+ 2

(1) Differentiation with time yields

3 x
Djm 2 e :x 5
VAT +x Helpful Hint
Substituting vy = x and vg = y gives
bEd B (1) Differentiation of the relation for a
vg = 1 Xp : s right tr.ianglo occurs frequently in
2 /h? + &2 mechanics.
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Sample Problem 2/13

Passengers in the jet transport A flying east at a speed of 800 km/h observe
a second jet plane B that passes under the transport in horizontal flight. Al-
though the nose of B is pointed in the 45° northeast direction, plane B appears to
the passengers in A to be moving away from the transport at the 60° angle as
shown. Determine the true velocity of B.

Solution. The moving reference axes x-y are attached to A, from which the rel-
ative observations are made. We write, therefore,

Vg = Va T Vgjy

Next we identify the knowns and unknowns. The velocity v, is given in both mag-
nitude and direction. The 60° direction of vy, the velocity which B appears to
have to the moving observers in A, is known, and the true velocity of B is in the
45° direction in which it is heading. The two remaining unknowns are the magni-

tudes of vy and vg,,. We may solve the vector equation in any one of three ways.
Helpful Hints

(D) We treat each airplane as a particle.
() Graphical. We start the vector sum at some point P by drawing v, to a
convenient scale and then construct a line through the tip of v, with the known
direction of vg4. The known direction of vp is then drawn through P, and the in-
tersection C yields the unique solution enabling us to complete the vector trian- (3) Students should become familiar
gle and scale off the unknown magnitudes, which are found to be with all three solutions.

(2 We assume no side slip due to cross
wind.

Upa = 586 km/h and vg = 717 km/h Ans. \
\

e g
\ Dir. of VA
¥

(i) Trigonometric. A sketch of the vector triangle is made to reveal the \
trigonometry, which gives 60°\
3 1 =800 km/h
Ug Ua sin 60° ‘A
= — = 800 =+ = 717 km/h Ans.
sin60° sin75° B sin 75° # \
xC
LN
Dir. of vg, / \
() Vector Algebra. Using unit vectors i and j, we express the velocities in /; . 0\°\
vector form as Puﬁ

VA
v, = 800i km/h Vg = (v cos 45°)i + (vp sin 45°)j

Vg = (Vg4 cos 60°)(—1) + (vg4 sin 60°)j

Substituting these relations into the relative-velocity equation and solving sepa-
rately for the i and j terms give

(i-terms) vp cos 45° = 800 — vy, cos 60°

s : i : 5

U-terms) Vg i 40 = vpys anl 00 (@) We must be prepared to recognize
the appropriate trigonometric rela-

Solving simultaneously yields the unknown velocity magnitudes
tion, which here is the law of sines.

Upga = 586 km/h and vg = 717 km/h Ans.
S & (B) We can see that the graphical or
It is worth noting the solution of this problem from the viewpoint of an observer trigonometric solution is shorter
in B. With reference axes attached to B, we would write vy = vg + v45. The ap- than the vector algebra solution in

parent velocity of A as observed by B is then v, /g, which is the negative of vy 4. this particular problem.

26
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Sample Problem 2/14

Car A is accelerating in the direction of its motion at the rate of 3 ft/sec?.
Car B is rounding a curve of 440-ft radius at a constant speed of 30 mi/hr. Deter-
mine the velocity and acceleration which car B appears to have to an observer in
car A if car A has reached a speed of 45 mi/hr for the positions represented.

Solution. We choose nonrotating reference axes attached to car A since the
motion of B with respect to A is desired.

Velocity. The relative-velocity equation is
Vg = V4t Vgy
and the velocities of A and B for the position considered have the magnitudes

5280 _ 5% 66 ft/sec vg = 30 - P ft/sec

va= 45700 30 30

The triangle of velocity vectors is drawn in the sequence required by the equa-
tion, and application of the law of cosines and the law of sines gives

vpa = 58.2 ft/sec 0 = 40.9° Ans.

Acceleration. The relative-acceleration equation is
ag =a, +agj

The acceleration of A is given, and the acceleration of B is normal to the curve in
the n-direction and has the magnitude

la, = vZp] ap = (44)%/440 = 4.4 ft/sec?

The triangle of acceleration vectors is drawn in the sequence required by the
equation as illustrated. Solving for the x- and y-components of ag;, gives us

(aga), = 4.4 cos 30° — 3 = 0.810 ft/sec?
(ap)y = 4.4 sin 30° = 2.2 ft/sec?

from which ag, = J(0.810)% + (2.2)% = 2.34 ft/sec? Ans.

The direction of ag;y may be specified by the angle g which, by the law of sines,
becomes

B =sin? (—- 0.5) =110.2° Ans.

ay = 3 ft/sec?

Helpful Hints

(D) Alternatively, we could use either
a graphical or a vector algebraic
solution.

@) Be careful to choose between the two
values 69.8° and 180 — 69.8 = 110.2".

Suggestion: To gain familiarity with the
manipulation of vector equations, it is
suggested that the student rewrite the
relative-motion equations in the form
Vpa = Vg — Vyand ag, = ap — a, and
redraw the vector polygons to conform
with these alternative relations.

Caution: So far we are only prepared to
handle motion relative to nonrotating
axes. If we had attached the reference
axes rigidly to car B, they would rotate
with the car, and we would find that the
velocity and acceleration terms relative
to the rotating axes are not the negative
of those measured from the nonrotating
axes moving with A. Rotating axes are
treated in Art. 5/7.
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Velocity is tangent to the path

¢ Tangential arrow along path = %ét.

*. — = l/p (curvature) A
gg * Normal arrow pointing inward = %Bﬂ,.

] — =1
e Combined acceleration vector shown as sum of both.
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dt  dsdt ds.
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Sample Problem 2/7

To anticipate the dip and hump in the road, the driver of a car applies her
brakes to produce a uniform deceleration. Her speed is 100 km/h at the bottom A of
the dip and 50 km/h at the top C of the hump, which is 120 m along the road from
A. If the passengers experience a total acceleration of 3 m/s? at A and if the radius of
curvature of the hump at C is 150 m, calculate (a) the radius of curvature p at A, (b)
the acceleration at the inflection point B, and (c) the total acceleration at C.

Solution. The dimensions of the car are small compared with those of the
path, so we will treat the car as a particle. The velocities are

i (100 km)( 717h~)(1000 k’:‘ﬂ) = 27.8 mis

h /\3600 s
e L0008
ve = 50 3600 13.89 m/s

We find the constant deceleration along the path from

ve s
[Jvdu:fa,ds] f vdu=a,st
v 0

A

I 5 _ (13.89)% — (27.8) P
— e etk B LS BE R DR
G = 55 o —ta) 2(120) ol

(a) Condition at A. With the total acceleration given and a, determined, we
can easily compute a, and hence p from

[a?=a,? + a2l a,>=3%- (2412 =319 a, = 1.785 m/s?

[a, = v¥p] p =v¥a, = (27.8)%/1.785 = 432 m Ans.

(b) Condition at B. Since the radius of curvature is infinite at the inflection
point, @, = 0 and

a=a,= —241m/s? Ans.

(c) Condition at C. The normal acceleration becomes
la, = v¥p] a, = (13.89)%/150 = 1.286 m/s*

With unit vectors e, and e, in the n- and #-directions, the acceleration may be
written

a = 1.286e, — 2.41e, m/s?

where the magnitude of a is

la = Ja, + a2 a = (1.286)% + (—2.41)% = 2.73 m/s? Ans.

The acceleration vectors representing the conditions at each of the three
points are shown for clarification.

Helpful Hint

(1) Actually, the radius of curvature to
the road differs by about 1 m from
that to the path followed by the cen-

ter of mass of the passengers, but we

have 1 ted this relatively small

difference

+n

a =3 m/s?
‘ 1 a, = 1.785 m/s?

: > =T 4t
a;=-2.41 m/s?
B P
a=a,=-2.41 m/s?
a;=-241m/s? C
< P ——— +t

\ a, = 1.286 m/s?
a, =2.73 m/s*

+n
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Sample Problem 2/8

A certain rocket maintains a horizontal attitude of its axis during the pow-
ered phase of its flight at high altitude. The thrust imparts a horizontal compo-
nent of acceleration of 20 ft/sec?, and the downward acceleration component is
the acceleration due to gravity at that altitude, which is g = 30 ft/sec’. At the in-
stant represented, the velocity of the mass center G of the rocket along the 15°
direction of its trajectory is 12,000 mi/hr. For this position determine (a) the ra-
dius of curvature of the flight trajectory, (b) the rate at which the speed v is in-
creasing, (c) the angular rate B of the radial line from G to the center of
curvature C, and (d) the vector expression for the total acceleration a of the
rocket.

Solution. We observe that the radius of curvature appears in the expression
for the normal component of acceleration, so we use n- and #-coordinates to de-
scribe the motion of G. The n- and ¢-components of the total acceleration are ob-
tained by resolving the given horizontal and vertical accelerations into their n-
and 7-components and then combining. From the figure we get

a, = 30 cos 15° — 20 sin 15° = 23.8 ft/sec”
a, = 30 sin 15° + 20 cos 15° = 27.1 ft/sec?

{a) We may now compute the radius of curvature from

v?  [(12,000)(44/30)1

la, = v?p] g 538 = 13.01(10°) ft Ans.

(b) The rate at which v is increasing is simply the #-component of acceleration.

[0 =a,l v = 27.1 ft/sec? Ans.

(€) The angular rate § of line GC depends on v and p and is given by

~ 12,000(44/30)

— = 13.53(10 %) rad/sec Ans.
13.01(10%)

[v= pB] ﬁ =u/p

{d) With unit vectors e, and e, for the n- and ¢-directions, respectively, the total
acceleration becomes

a = 23.8e, + 27.1e, ft/sec? Ans.

Helpful Hints

(1) Alternatively, we could find the re-
sultant acceleration and then re-
solve it into n- and f-components.

(@) To convert from mi/hr to ft/sec, multi-
5280 ft/mi 44 ft/sec 2
plyby ————— =~>———which
3600 sec/hr 30 mi/hr
is easily remembered, as 30 mi/hr is

the same as 44 fi/sec.

a, = 20 ft/sec?
x

a
g = 30 ft/sec?
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1) Start from the polar velocity

PolaerCoordinates: Radial and Transverse Component:

v=re,+rble

where €, points outward from the origin and &g is perpendicular to €, in the direction of

increasing 6.

2) Time derivatives of the unit vectors

Using &, = (cos )i+ (sin @) j and
ég = —(sinf) i+ (cosh) ],

differentiate with respect to t:

& =08y, &5=—06é,.

3) Differentiate the velocity (product rule)

dv d,.. d, -.
= ('re,.)-l—&( Geg).

5) Final polar acceleration

2T dt " dt

a=(#—70%)& + (rf+270)é&

Work each term:

d . .
d—t('ér) =ié + 76 =7é& +7(0&),

%( 0é9) = (70 +76) 8 +7r08 = (70 +70)é +70(—08,).

4) Collect €, and €y parts

Radial:
é.: F—r0>

Transverse:

Chapter 2 - Curvilinear

é: 70+ (F0+16)=270+70.
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Sample Problem 2/9

Rotation of the radially slotted arm is governed by § = 0.2¢ + 0.02¢*, where m '\r
f is in radians and ¢ is in seconds. Simultaneously, the power screw in the arm A ‘b
engages the slider B and controls its distance from O according to r = 0.2 + 0 |
0.04#2, where r is in meters and ¢ is in seconds. Calculate the magnitudes of the e — o
velocity and acceleration of the slider for the instant when ¢ = 3 s.
Solution. The coordinates and their time derivatives which appear in the ex- = 0TS
pressions for velocity and acceleration in polar coordinates are obtained first and L 5 =)
evaluated for ¢t = 3 s. / i
; v, =0.24m/s
r =02+ 0.04t> ry = 0.2+ 0.04(3% = 0.56 m
vg=0.414 m/s ‘B
7 = 0.08¢ Fq = 0.08(3)= 0.24 m/s
7 =0.08 7, = 0.08 m/s?

; 5 r=0.56 m
0 = 0.2t + 0.02¢3 0;=0.2(3) + 0.02(3%) = 1.14 rad

or f; = 1.14(180/7) = 65.3°

0 =02+006:2 6,=0.2+ 0.06(3%) = 0.74 rad/s

6 =0.12¢ 6, = 0.12(3) = 0.36 rad/s?

The velocity components are obtained from Eq. 2/13 and for ¢ = 3 s are

v, = 71 v, = 0.24 m/s
[, = ré] v, = 0.56(0.74) = 0.414 m/s
[v=v,2+ v v = (0.24)% + (0.414)> = 0.479 m/s Ans.

The velocity and its components are shown for the specified position of the arm.
The acceleration components are obtained from Eq. 2/14 and for ¢ = 3 s are

la, = ¥ —r6? .= 0.08 — 0.56(0.74)? = —0.227 m/s*

la,=rf +2r0]  a,=0.56(0.36) + 2(0.24)(0.74) = 0.557 m/s? 1

[a=Ja2+a? a = J(=0.227)% + (0.557)? = 0.601 m/s? Ans. ¢ t=35
The acceleration and its components are also shown for the 65.3° po- 0.5 ; / 4

sition of the arm.
Plotted in the final figure is the path of the slider B over the time y m

J ry=056m |3
interval 0 = ¢ = 5 s. This plot is generated by varying ¢ in the given ex- ‘

6,/=65.3° 0
pressions for r and #. Conversion from polar to rectangular coordinates 0 /
is given by [
t=0
x =rcosf y=rsinf 05 f=hE
-15 e -0.5 0 0.5
Helpful Hint Xy

(1) We see that this problem is an example of constrained motion where the cen-
ter B of the slider is mechanically constrained by the rotation of the slotted
arm and by engagement with the turning screw.
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Sample Problem 2/10

A tracking radar lies in the vertical plane of the path of a rocket which is
coasting in unpowered flight above the atmosphere. For the instant when 6 =
30°, the tracking data give r = 25(10%) ft, i+ = 4000 ft/sec, and § = 0.80 deg/sec.
The acceleration of the rocket is due only to gravitational attraction and for its
particular altitude is 31.4 ft/sec? vertically down. For these conditions determine
the velocity v of the rocket and the values of # and 6.

Solution. The components of velocity from Eq. 2/13 are

[v,=r] v, = 4000 ft/sec
vy = ré] vy = 25(104)(0.80)(%0) = 3490 ft/sec
SR L, | O TR TN T
v =Ju,2+ v, v = ,/(4000)? + (3490)% = 5310 ft/sec Ans.

Since the total acceleration of the rocket is g = 31.4 ft/sec’ down, we can
easily find its r- and #-components for the given position. As shown in the figure,
they are

a, = —31.4 cos 80° = —27.2 ft/sec?
a, = 31.4 sin 30° = 15.70 ft/sec?

We now equate these values to the polar-coordinate expressions for a, and a,
which contain the unknowns 7 and 6. Thus, from Eq. 2/14

la, = ¥ —r6? -27.2

# — 25(10%) 0.80 —~ :
7 (10%)| 0. 180

21.5 ft/sec? Ans.

~:
]

la,=rf +2r6]1  15.70

4y 4 S
25(10%) 60 + 2(4000)(0.80 180)

—3.84(10 %) rad/sec? Ans.

:
]

, v="5310 ft /sec

/ vy = 3490 ft /sec

a, = 15.70 ft /sec?

a, = -27.2 ft/sec?

Helpful Hints

(1) We observe that the angle ¢ in polar
coordinates need not always be taken
positive in a counterclockwise sense.

(2) Note that the r-component of accel-
eration is in the negative r-direction,
80 it carries a minus sign.

(@ We must be careful to convert  from 50
deg/sec to rad/sec.




Curvilinear Motion

Velocity and Acceleration

N

dr dv
V=— q4=—
(dt dt

(s
Y= —
dt

Projectile Motion

- __glay)
Ay = Axtan@ 22 cos’ 0
2 . 2v: Ay
(tan@) - 2V, =2 (tand)- ( 2 }W
gAx
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Curvilinear Motion

Relative Motions

Vaa =Ts — 14 Radial/Transverse
Vaa=V¥Yp—Vy Components
dpi, =dp —A ‘I|.’=i"ﬂ'r +.*“15.‘3|E

A= LF —r@* }er + {H‘fr' + fofr')eﬂ
Normal/Tangential

Components
2
N hf{—_%£ a:diet +LE.:
dt o,
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