Chapter 2 — Part1 Forces

STATICS, AGE-1330 Ahmed M El-Sherbeeny, PhD Fall-2025

Mechanics: Scalars and Vectors

Scalar

- Only magnitude is associated with it
 - e.g., time, volume, density, <u>speed</u>, energy, mass etc.

Vector

- Possess direction as well as magnitude
- Parallelogram law of addition (and the triangle law)
- e.g., displacement, velocity, acceleration etc.

Tensor

-e.g., stress (3×3 components)

Mechanics: Scalars and Vectors

- Laws of vector addition
 - Equivalent vector v = V₁ + V₂ (Vector Sum)

Mechanics: Scalars and Vectors

A Vector **V** can be written as: $\mathbf{V} = V\mathbf{n}$

V = magnitude of V

n = unit vector whose magnitude is one and whose direction coincides with that of V

Unit vector can be formed by dividing any vector, such as the geometric position vector, by its length or magnitude

Vectors represented by Bold and Non-Italic letters (V)

Magnitude of vectors represented by Non-Bold, Italic letters

Types of Vectors: Fixed Vector

Fixed Vector

- Constant magnitude and direction
 - Unique point of application
- e.g., force on a deformable body

- e.g., force on a given particle

Types of Vectors: Sliding Vector

- Sliding Vector
 - Constant magnitude and direction
 - Unique line of action
 - "Slide" along the line of action
 - No unique point of application

Types of Vectors: Sliding Vector

Sliding Vector

- Principle of Transmissibility
 - Application of force at any point along a particular line of action
 - No change in resultant external effects of the force

Types of Vectors: Free Vector

Free Vector

- Freely movable in space
 - No unique line of action
 - No unique point of application
- e.g., moment of a couple

Vectors: Rules of addition

Parallelogram Law

- Equivalent vector represented by the diagonal of a parallelogram
 - $V = V_1 + V_2$ (Vector Sum)
 - $V \neq V_1 + V_2$ (Scalar sum)

Vectors: Parallelogram law of addition

Addition of two parallel vectors

$$-\mathbf{F_1} + \mathbf{F_2} = \mathbf{R}$$

Vectors: Parallelogram law of addition

Addition of 3 vectors

$$-\mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} = \mathbf{R}$$

Vectors: Rules of addition

Trigonometric Rule

- Law of Sines
- Law of Cosine

Sine law:

$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$

Cosine law:

$$C = \sqrt{A^2 + B^2 - 2AB\cos c}$$

- Force: Represented by vector
 - Magnitude, direction, point of application
 - P: fixed vector (or sliding vector??)
 - External Effect
 - Applied force; Forces exerted by bracket, bolts, Foundation (reactive force)

- Rigid Bodies
 - External effects only
 - Line of action of force is important
 - Not its point of application
 - Force as sliding vector

F₁ and F₂

Concurrent forces

- Lines of action intersect at a point

Transmissibility

Components and Projections of a Force

- Components and Projections
 - Equal when axes are orthogonal

$$\mathbf{F_1}$$
 and $\mathbf{F_2}$ are components of \mathbf{R}
 $\mathbf{R} = \mathbf{F_1} + \mathbf{F_2}$

:F_a and F_b are perpendicular projections on axes a and b

: $\mathbf{R} \neq \mathbf{F}_{\mathbf{a}} + \mathbf{F}_{\mathbf{b}}$ unless a and b are perpendicular to each other

Rectangular components of 2-D Force System

$$F_x = F \cos \theta$$
 $F = \sqrt{F_x^2 + F_y^2}$ $F_y = F \sin \theta$ $\theta = \tan^{-1} \frac{F_y}{F_x}$

Examples

$$F_x = F \sin \beta$$
$$F_y = F \cos \beta$$

$$F_x = -F \cos \beta$$
$$F_y = -F \sin \beta$$

Examples

$$F_x = F \sin(\pi - \beta)$$

$$F_y = -F \cos(\pi - \beta)$$

$$F_x = F \cos(\beta - \alpha)$$
$$F_y = F \sin(\beta - \alpha)$$

Example 1:

Determine the x and y scalar components of F_1 , F_2 , and F_3 acting at point A of the bracket

Solution:

$$F_{1_x} = 600 \cos 35^\circ = 491 \text{ N}$$

 $F_{1_y} = 600 \sin 35^\circ = 344 \text{ N}$
 $F_{2_x} = -500(\frac{4}{5}) = -400 \text{ N}$
 $F_{2_y} = 500(\frac{3}{5}) = 300 \text{ N}$

$$\alpha = \tan^{-1} \left[\frac{0.2}{0.4} \right] = 26.6^{\circ}$$

$$F_{3_x} = F_3 \sin \alpha = 800 \sin 26.6^\circ = 358 \text{ N}$$

$$F_{3} = -F_3 \cos \alpha = -800 \cos 26.6^\circ = -716 \text{ N}$$

Alternative Solution: Scalar components of \mathbf{F}_3 can be obtained by writing \mathbf{F}_3 as a magnitude times a unit vector \mathbf{n}_{AB} in the direction of the line segment AB.

Unit vector can be formed by dividing any vector, such as the geometric position vector by its length or magnitude.

$$\mathbf{F}_{3} = F_{3}\mathbf{n}_{AB} = F_{3}\frac{\overrightarrow{AB}}{\overrightarrow{AB}} = 800 \left[\frac{0.2\mathbf{i} - 0.4\mathbf{j}}{\sqrt{(0.2)^{2} + (-0.4)^{2}}} \right]$$

$$= 800[0.447\mathbf{i} - 0.894\mathbf{j}]$$

$$= 358\mathbf{i} - 716\mathbf{j} \text{ N}$$

$$F_{3_{x}} = 358 \text{ N}$$

$$F_{3_{y}} = -716 \text{ N}$$

Determine the components of each force Evaluate the resultant in x and y directions

Example 2: The two forces act on a bolt at A. Determine their resultant.

- Graphical solution –
- Construct a parallelogram with sides in the same direction as P and Q and lengths in proportion.
- Graphically evaluate the resultant which is equivalent in direction and proportional in magnitude to the diagonal.
- Trigonometric solution
- Use the law of cosines and law of sines to find the resultant.

Q = 60 N $25^{\circ} \text{ P} = 40 \text{ N}$ $20^{\circ} \text{ P} = 40 \text{ N}$

Solution:

 Graphical solution - A parallelogram with sides equal to P and Q is drawn to scale. The magnitude and direction of the resultant or of the diagonal to the parallelogram are measured,

$$\mathbf{R} = 98 \,\mathrm{N}$$
 $\alpha = 35^{\circ}$

Graphical solution - A triangle is drawn with P
and Q head-to-tail and to scale. The
magnitude and direction of the resultant or of
the third side of the triangle are measured,

$$\mathbf{R} = 98 \,\mathbf{N}$$
 $\alpha = 35^{\circ}$

Q = 60 N $25^{\circ} \text{ P} = 40 \text{ N}$ $20^{\circ} \text{ P} = 40 \text{ N}$

Trigonometric Solution:

$$R^{2} = P^{2} + Q^{2} - 2PQ\cos B$$

= $(40N)^{2} + (60N)^{2} - 2(40N)(60N)\cos 155^{\circ}$

$$R = 97.73N$$

$$\frac{\sin A}{Q} = \frac{\sin B}{R}$$

$$\sin A = \sin B \frac{Q}{R}$$

$$= \sin 155^{\circ} \frac{60 \text{N}}{97.73 \text{N}}$$

$$A = 15.04^{\circ}$$

$$\alpha = 20^{\circ} + A$$

$$\alpha = 35.04^{\circ}$$

Determine the resultant force if F1 = F2 = 200 N.

Example 3: Tension in cable *BC* is 725 N; determine the resultant of the three forces exerted at point *B* of beam *AB*.

Solution:

- Resolve each force into rectangular components.
- Determine the components of the resultant by adding the corresponding force components.
- Calculate the magnitude and direction of the resultant.

Solution

Magnitude, N	x Component, N	y Component, N
725	-525	500
500	-300	- 400
780	720	- 300
	$R_{x} = -105$	$R_y = -200$

$$\mathbf{R} = R_x \mathbf{i} + R_y \mathbf{j}$$
 $\mathbf{R} = (-105 \text{ N})\mathbf{i} + (-200 \text{ N})\mathbf{j}$

Calculate the magnitude and direction.

If F1 = 1 kN, F2 = 900 N, F3 = 1.2 kN, compute the resultatnt force acting on point B.

2/7 The y-component of the force \mathbf{F} which a person exerts on the handle of the box wrench is known to be 70 lb. Determine the x-component and the magnitude of \mathbf{F} .

Ans. $F_x = 29.2$ lb, F = 75.8 lb

2/13 If the equal tensions T in the pulley cable are 400 N, express in vector notation the force \mathbf{R} exerted on the pulley by the two tensions. Determine the magnitude of \mathbf{R} .

Ans. $\mathbf{R} = 600\mathbf{i} + 346\mathbf{j}$ N, R = 693 N

$$R_x = \sum F_x = 400 + 400 \cos 60^\circ = 600 \text{ N}$$
 $R_y = \sum F_y = 400 \sin 60^\circ = 346 \text{ N}$
 $R_z = \frac{600 \text{ i} + 346 \text{ i} \text{ N}}{1000} = \frac{693 \text{ N}}{1000}$