Introduction

Outline

\/
2 X4

Programming Languages
o Object Oriented Programming
o Procedural Programming

What is C?
o Short history
o Features, Strengths and weaknesses
o Relationships to other languages

Writing C Programs
o Editing
o Compiling
Structure of C Programs
o Comments
o Variables
o Functions: main, function prototypes and functions
o Expressions and Statements

K/
%¢

K/
%®

K/
¢

Programming Languages

1 Many programming languages exist, each intended for a specific purpose
o Over 700 programming language entries on wikipedia
o Should we learn all?

1 Which is the best language? None!
1 Choose the right tool for the job based on:

o problem scope,

target hardware/software,

memory and performance considerations,
portability,

O
O
O
O concurrency.

ramming Languages

na 1860 1n05 1are rors 1008 1080 19085 2000 2002 2003 2008
= = e = — 1970 1975 1980 1985
~ Rex 1.00 Rex 2.00 Rex .00, Rexx 3.20
May 1979 1980 082 1984
= PostScript
082
Forth,
1969
= = Logo Logo
1968 1686
FORTRAN ¥
M|nm
| " Prolog 1l
1w ot 1982 1984
Sharp APL
(ANST) MUMPS
O,REILLY — Sept. 15,1677 _mm_
APL2
Acget 1984
B
el
FoBoL 68 ANS: COBOL 74 ANSI COBOL BS OSUANS!
1968 1904 08
Pascal
1w 1983
UM Moduls Modula 2.
1w "ws "
Ada Ada 83 ANSI
W o 1980
PLI1 ANS Object Pascal i
198 1085
Concurrent
[
B, [© (K&R) o)
1968 " "
o . Objective-C,
W 1983
Coe
Mot 1980 uly 1583

Object Oriented Programming

-

Very useful to organize large software projects

L

The program is organized as classes

1 The data is broken into ‘objects’ and the sequence of commands becomes the

interactions between objects:
o decide which classes you need
o provide a full set of operations for each class
o and make commonality explicit by using inheritance.

(1 Coveredin CSC111 and CSC113

Procedural Programming

1 The program is divided up into subroutines a.k.a procedures a.k.a functions ...
1 Allows code to become structured

1 The programmer must think in terms of actions:
o decide which procedures and data structures you want

1 Procedural languages include:

o Fortran
o BASIC
o Pascal
o C

o -

Differences

(1 Think about:

(@)

O O O O O O

Basic program unit

Design approach

Extending functionality

Security and visibility of program components
Relationship to real world

Level of abstraction

Implementation of code reusability

Whatis C?

1 History:

(@)

O O O O O

@)

1972 - Dennis Ritchie — AT&T Bell Laboratories
16-bit DEC PDP-11 computer
1978 - Published; first specification of language
1989 - C89 standard (known as ANSI C or Standard C)
1990 - ANSI C adopted by ISO, known as C90
1999 - C99 standard: mostly backward-compatible
not completely implemented in many compilers
2007 - work on new C standard C1X announced, improved in 2011 (C11)
2018 - C18, few technical corrections

1 In this course: ANSI/ISO C (C89/C90)

Whatis C?

1 Features:
o Provides low -level access to memory

Provides language constructs that map efficiently to machine instructions
Few keywords (32 in ANSI C)
Structures, unions — compound data types
Pointers - memory, arrays
External standard library — I/O, other facilities
Compiles to native code
Systems programming:

m OSes, like Linux

m microcontrollers: automobiles and airplanes

m embedded processors: phones, portable electronics, etc.

m DSP processors: digital audio and TV systems
m ...Macro preprocessor

o Widely used today, extends to newer system architectures

O O O O O O O

Whatis C?

1 Strengths:

o Efficiency: intended for applications where assembly language had traditionally been used
Portability: hasn’t splintered into incompatible dialects; small and easily written

Power: large collection of data types and operators

Flexibility: not only for system but also for embedded system commercial data processing
Standard library

Integration with UNIX

1 Weaknesses

o Error-prone:
m Error detection left to the programmer
o Difficult to understand
m Large programs
m Difficult to modify
© Memory management
m Memory management is left to the programmer

O O O O O

Relationship to Other Languages

1 More recent derivatives: C++, Objective C, C#
1 Influenced: Java, Perl, Python (quite different)

. In comparison with Java, C lacks:
Exceptions
Range-checking
Memory management and garbage collection.
Classes, objects and object-oriented programming
O Polymorphism, encapsulation, information hiding ...

@)
@)
@)
@)

1 Shares with Java;

o /* Comments */

Variable declarations

if / else statements

for / while loops

function definitions (like methods)
main function starts program

O O O O O

Remember How Processor Works

[PC[IR [MAR [MDR|
Registers |Accurmulator

ALV NNNNSNNNAN

CPU: Central Processing Unit
ALU: Arithmetic and Logic Unit
PC: Program Counter

IR: Instruction Register
MAR: Memory Address Register *

MDR: Memory Data Register .

% How programs are executed:

O

O

O

O

CPU fetches instruction from memory
The instructions i1s decoded

If data 1s needed, it is loaded from
memory

Instruction is executed
Results are stored back if any

PC 1s incremented

Fetch Decode Execute Cycle in more detail

https://www.hartismere.com/20398/CPU-Fetch-Decode-Execute-Animation

http://visual6502.0rq/JSSim/index.html

C Programs

1 Editing:
o C source code files has .c extension
o Text files that can be edited using any text editor: Example product.c
#include <stdio.h>
main () {
int a, b, c;
a =3; b=2; c=a* b;
printf (“The product is %d”, c);
}
d Compiling:
O gcc -0 product product.c

m “-0” place the output in file product
m “product” is the executable file

o To execute the program:
m product onwindows or . /product on Linux and Linux-like

C Compilers

1 Several compilers

o Microsoft compiler
o GNU Compiler Collection (GCC)
o :(see a List of C compilers)

1 How to install GCC on windows:
o MinGW: from https://nuwen.net/mingw.html
o Cygwin: from https://cygwin.com/install.html
o Don’t forget to update the PATH environment variable!

1 Compilation options:
0 gcc -ansi product.c ; check the program compatibility with ANSI C
0 gcc -Wall product.c : enables all the warnings that are easy to avoid

o In this course we will always use:
gcc -Wall -ansi -o product product.c

1 Cross Compilation: compiling on one platform to run on another

Structure of .c File

/* Begin with comments about file contents */
/* Insert #include statements and preprocessor definitions */
/* Function prototypes and variable declarations */

/* Define main () function {
Function body

*/

/* Define other function(s) {
Function body

*/

StrHCture Of C File: Comments

1 /% this is a simple comment */

1 Can span multiple lines
/* This comment
Spans
mul¢tipleldnes */

L

Completely ignored by compiler

L

Can appear almost anywhere|
/* hello.c -
our £ 1 r s t C program

Created for CSC215 x/

Stl‘uctul‘e Of C File: #include Preprocessor

[#include 1S a preprocessor:

o Header files: constants, functions, other declarations
o #include: read the contents of the header file stdio.h

[stdio.h: standard I/O functions for console and files
#include <stdio.h>
/* basic I/0 facilities */
O stdio.h — part of the C Standard Library

1 other important header files:
assert.h ctype.h errno.h float.h limits.h locale.h math.h
signal.h setymp.h stdarg.h stddef.h stdlib.h string.h time.h

1 Included files must be on include path

o standard include directories assumed by default
o #include "stdio.h" — searches ./ for stdio.h first

Stl‘uctul‘e Of C File: #Variables and Constants

1 Variables: named spaces in memory that hold values
o Refer to these spaces using their names rather than memory addresses
o Names selection adheres to some rules
o Defined with a type that determines their domains and operations
o Variable must be declared prior to their use
o Can change their values after initialization

1 Constants:

o Do not change their values after initialization
o Can be of any basic or enumerated data type
o Declared by assigning a literal to a typed name, with the use of the keyword const
const int LENGTH = 10;
Const char NEWLINE = '\n';
o Can also use the #define preprocessor
#define LENGTH 10
#define NEWLINE '\n'

Stl‘uctul‘e Of C File: Function Prototype

-
-
-

Functions also must be declared before use

Function’s declaration called function prototype

Function prototypes:

int factorial (int);

int factorial(int n);

Prototypes for many common functions in header files for C Standard Library
General form:

return type function name (argltype,arg2type,...);
Arguments: local variables, values passed from caller

Return value: single value returned to caller when function exits

void — signifies no return value/arguments int rand(void);

Uod U0

Stl‘uctlll‘e Of C File: Function main

J main () : entry point for C program

1 Simplest version:
O no inputs,
o outputs 0 when successful,
o and nonzero to signal some error int main(void);

1 Two-argument form of main():

o access command-line arguments int main(int argc, char **argv);
o More on the char **argv notation later

Stl‘llctul‘e Of C File: Function Definitions

J Function declaration
<return type> <function name>(<list of parameters>) {
<declare variables;>
<program statements;>
return <expression>;

}

Must match prototype (if there is one)

o variable names don’t have to match
No semicolon at end
Curly braces define a block — region of code

o Variables declared in a block exist only in that block
o Variable declarations before any other statements

L O

Stl‘llctul‘e Of C File: Expressions and statements

1 Expression:

o asequence of characters and symbols that can be evaluated to a single data item.

o consists of: literals, variables, subexpressions, interconnected by one or more operators
m Numeric literals like 3 or 4.5

m String literals like “Hello”
o Example expressions:
m Binary arithmetic
xty , x-y , X*y , X/y y XY

1 Statement:

o A sequence of characters and symbols causes the computer to carry out some definite action
o Not all statements have values

o Example statement:
y = x+3xx/ (y-4);
o Semicolon ends statement (not newline)

Console Input and Output

1 stdout, stdin: console output and input streams

(@)

@)
@)
@)
@)

puts (<string expression>): prints string to stdout

putchar (<char expression>): prints character to stdout

<char var> = getchar ():returns character from stdin

<string var> = gets (<buffer>):reads line from stdin into buffer
printf (control string, argl, arg2, ..) tobe discussed later

Output Statements

/* The main () function */

int main (void)/* entry point */ {
/* write message to console */
puts("Hello World!"™);

return 0; /* exit (0 => success) x/

}
J puts (<string>): output text to console window (stdout) and end the line

1 String literal: written surrounded by double quotes
1 return 0; exits the function, returning value 0 to caller

