
Introduction

CSC215
Lecture

Outline

❖ Programming Languages
○ Object Oriented Programming
○ Procedural Programming

❖ What is C?
○ Short history
○ Features, Strengths and weaknesses
○ Relationships to other languages

❖ Writing C Programs
○ Editing
○ Compiling

❖ Structure of C Programs
○ Comments
○ Variables
○ Functions: main, function prototypes and functions
○ Expressions and Statements

Programming Languages

❏ Many programming languages exist, each intended for a specific purpose
○ Over 700 programming language entries on wikipedia
○ Should we learn all?

❏ Which is the best language? None!

❏ Choose the right tool for the job based on:
○ problem scope,
○ target hardware/software,
○ memory and performance considerations,
○ portability,
○ concurrency.

Programming Languages

Object Oriented Programming

❏ Very useful to organize large software projects

❏ The program is organized as classes

❏ The data is broken into ‘objects’ and the sequence of commands becomes the
interactions between objects:

○ decide which classes you need
○ provide a full set of operations for each class
○ and make commonality explicit by using inheritance.

❏ Covered in CSC111 and CSC113

Procedural Programming

❏ The program is divided up into subroutines a.k.a procedures a.k.a functions ...

❏ Allows code to become structured

❏ The programmer must think in terms of actions:
○ decide which procedures and data structures you want

❏ Procedural languages include:
○ Fortran
○ BASIC
○ Pascal
○ C
○ :

Differences

❏ Think about:
○ Basic program unit
○ Design approach
○ Extending functionality
○ Security and visibility of program components
○ Relationship to real world
○ Level of abstraction
○ Implementation of code reusability

❏ History:
○ 1972 - Dennis Ritchie – AT&T Bell Laboratories
○ 16-bit DEC PDP-11 computer
○ 1978 - Published; first specification of language
○ 1989 - C89 standard (known as ANSI C or Standard C)
○ 1990 - ANSI C adopted by ISO, known as C90
○ 1999 - C99 standard: mostly backward-compatible

not completely implemented in many compilers
○ 2007 - work on new C standard C1X announced, improved in 2011 (C11)
○ 2018 - C18, few technical corrections

❏ In this course: ANSI/ISO C (C89/C90)

What is C?

What is C?

❏ Features:
○ Provides low -level access to memory
○ Provides language constructs that map efficiently to machine instructions
○ Few keywords (32 in ANSI C)
○ Structures, unions – compound data types
○ Pointers - memory, arrays
○ External standard library – I/O, other facilities
○ Compiles to native code
○ Systems programming:

■ OSes, like Linux
■ microcontrollers: automobiles and airplanes
■ embedded processors: phones, portable electronics, etc.
■ DSP processors: digital audio and TV systems
■ . . . Macro preprocessor

○ Widely used today, extends to newer system architectures

What is C?

❏ Strengths:
○ Efficiency: intended for applications where assembly language had traditionally been used
○ Portability: hasn’t splintered into incompatible dialects; small and easily written
○ Power: large collection of data types and operators
○ Flexibility: not only for system but also for embedded system commercial data processing
○ Standard library
○ Integration with UNIX

❏ Weaknesses
○ Error-prone:

■ Error detection left to the programmer
○ Difficult to understand

■ Large programs
■ Difficult to modify

○ Memory management
■ Memory management is left to the programmer

Relationship to Other Languages

❏ More recent derivatives: C++, Objective C, C#
❏ Influenced: Java, Perl, Python (quite different)
❏ In comparison with Java, C lacks:

○ Exceptions
○ Range-checking
○ Memory management and garbage collection.
○ Classes, objects and object-oriented programming

❏ Polymorphism, encapsulation, information hiding ...

❏ Shares with Java:
○ /* Comments */
○ Variable declarations
○ if / else statements
○ for / while loops
○ function definitions (like methods)
○ main function starts program

Remember How Processor Works

The Processor ❖ How programs are executed:

○ CPU fetches instruction from memory

○ The instructions is decoded

○ If data is needed, it is loaded from
memory

○ Instruction is executed

○ Results are stored back if any

○ PC is incremented

CPU: Central Processing Unit
ALU: Arithmetic and Logic Unit
PC: Program Counter
IR: Instruction Register
MAR: Memory Address Register

MDR: Memory Data Register

● Fetch Decode Execute Cycle in more detail
● https://www.hartismere.com/20398/CPU-Fetch-Decode-Execute-Animation
● http://visual6502.org/JSSim/index.html

C Programs

❏ Editing:
○ C source code files has .c extension
○ Text files that can be edited using any text editor: Example product.c

#include <stdio.h>
main() {

int a, b, c;
a = 3; b = 2; c = a * b;
printf(“The product is %d”, c);

}

❏ Compiling:
○ gcc -o product product.c

■ “-o” place the output in file product
■ “product” is the executable file

○ To execute the program:
■ product on windows or ./product on Linux and Linux-like

C Compilers

❏ Several compilers
○ Microsoft compiler
○ GNU Compiler Collection (GCC)
○ : (see a List of C compilers)

❏ How to install GCC on windows:
○ MinGW: from https://nuwen.net/mingw.html
○ Cygwin: from https://cygwin.com/install.html
○ Don’t forget to update the PATH environment variable!

❏ Compilation options:
○ gcc -ansi product.c : check the program compatibility with ANSI C
○ gcc -Wall product.c : enables all the warnings that are easy to avoid
○ In this course we will always use:

gcc -Wall -ansi -o product product.c

❏ Cross Compilation: compiling on one platform to run on another

Structure of .c File

/* Begin with comments about file contents */

/* Insert #include statements and preprocessor definitions */

/* Function prototypes and variable declarations */

/* Define main() function {
Function body

}
*/

/* Define other function(s) {
Function body

}
*/

Structure of .c File: Comments

❏ / this is a simple comment /

❏ Can span multiple lines
/∗ This comment

Spans
m u l t i p l e l i n e s ∗/

❏ Completely ignored by compiler

❏ Can appear almost anywhere|
/∗ h e l l o . c −

our f i r s t C program
Created for CSC215 ∗/

Structure of .c File: #include Preprocessor

❏ #include is a preprocessor:
○ Header files: constants, functions, other declarations
○ #include: read the contents of the header file stdio.h

❏ stdio.h: standard I/O functions for console and files
#include <stdio.h>
/∗ basic I/O facilities */

○ stdio.h – part of the C Standard Library

❏ other important header files:
assert.h ctype.h errno.h float.h limits.h locale.h math.h
signal.h setjmp.h stdarg.h stddef.h stdlib.h string.h time.h

❏ Included files must be on include path
○ standard include directories assumed by default
○ #include "stdio.h" – searches ./ for stdio.h first

Structure of .c File: #Variables and Constants

❏ Variables: named spaces in memory that hold values
○ Refer to these spaces using their names rather than memory addresses
○ Names selection adheres to some rules
○ Defined with a type that determines their domains and operations
○ Variable must be declared prior to their use
○ Can change their values after initialization

❏ Constants:
○ Do not change their values after initialization
○ Can be of any basic or enumerated data type
○ Declared by assigning a literal to a typed name, with the use of the keyword const

const int LENGTH = 10;
Const char NEWLINE = '\n';

○ Can also use the #define preprocessor
#define LENGTH 10
#define NEWLINE '\n'

Structure of .c File: Function Prototype

❏ Functions also must be declared before use
❏ Function’s declaration called function prototype
❏ Function prototypes:

int factorial(int);
int factorial(int n);

❏ Prototypes for many common functions in header files for C Standard Library
❏ General form:

return_type function_name(arg1type,arg2type,...);
❏ Arguments: local variables, values passed from caller
❏ Return value: single value returned to caller when function exits
❏ void – signifies no return value/arguments int rand(void);

Structure of .c File: Function main

❏ main(): entry point for C program
❏ Simplest version:

○ no inputs,
○ outputs 0 when successful,
○ and nonzero to signal some error int main(void);

❏ Two-argument form of main():
○ access command-line arguments int main(int argc, char ∗∗argv);
○ More on the char **argv notation later

Structure of .c File: Function Definitions

❏ Function declaration
<return_type> <function_name>(<list_of_parameters>){

<declare_variables;>
<program_statements;>
return <expression>;

}

❏ Must match prototype (if there is one)
○ variable names don’t have to match

❏ No semicolon at end
❏ Curly braces define a block – region of code

○ Variables declared in a block exist only in that block
○ Variable declarations before any other statements

Structure of .c File: Expressions and statements

❏ Expression:
○ a sequence of characters and symbols that can be evaluated to a single data item.
○ consists of: literals, variables, subexpressions, interconnected by one or more operators

■ Numeric literals like 3 or 4.5
■ String literals like “Hello”

○ Example expressions:
■ Binary arithmetic

x+y , x-y , x*y , x/y , x%y

❏ Statement:
○ A sequence of characters and symbols causes the computer to carry out some definite action
○ Not all statements have values
○ Example statement:

y = x+3∗x/(y−4);
○ Semicolon ends statement (not newline)

Console Input and Output

❏ stdout, stdin: console output and input streams
○ puts(<string_expression>): prints string to stdout
○ putchar(<char_expression>): prints character to stdout
○ <char_var> = getchar(): returns character from stdin
○ <string_var> = gets(<buffer>): reads line from stdin into buffer
○ printf(control_string, arg1, arg2, …) to be discussed later

Output Statements

/ The main () function /
int main (void)/ entry point / {
/ write message to console /
puts("Hello World!");
return 0; / exit (0 => success) /

}

❏ puts(<string>): output text to console window (stdout) and end the line
❏ String literal: written surrounded by double quotes
❏ return 0; exits the function, returning value 0 to caller

