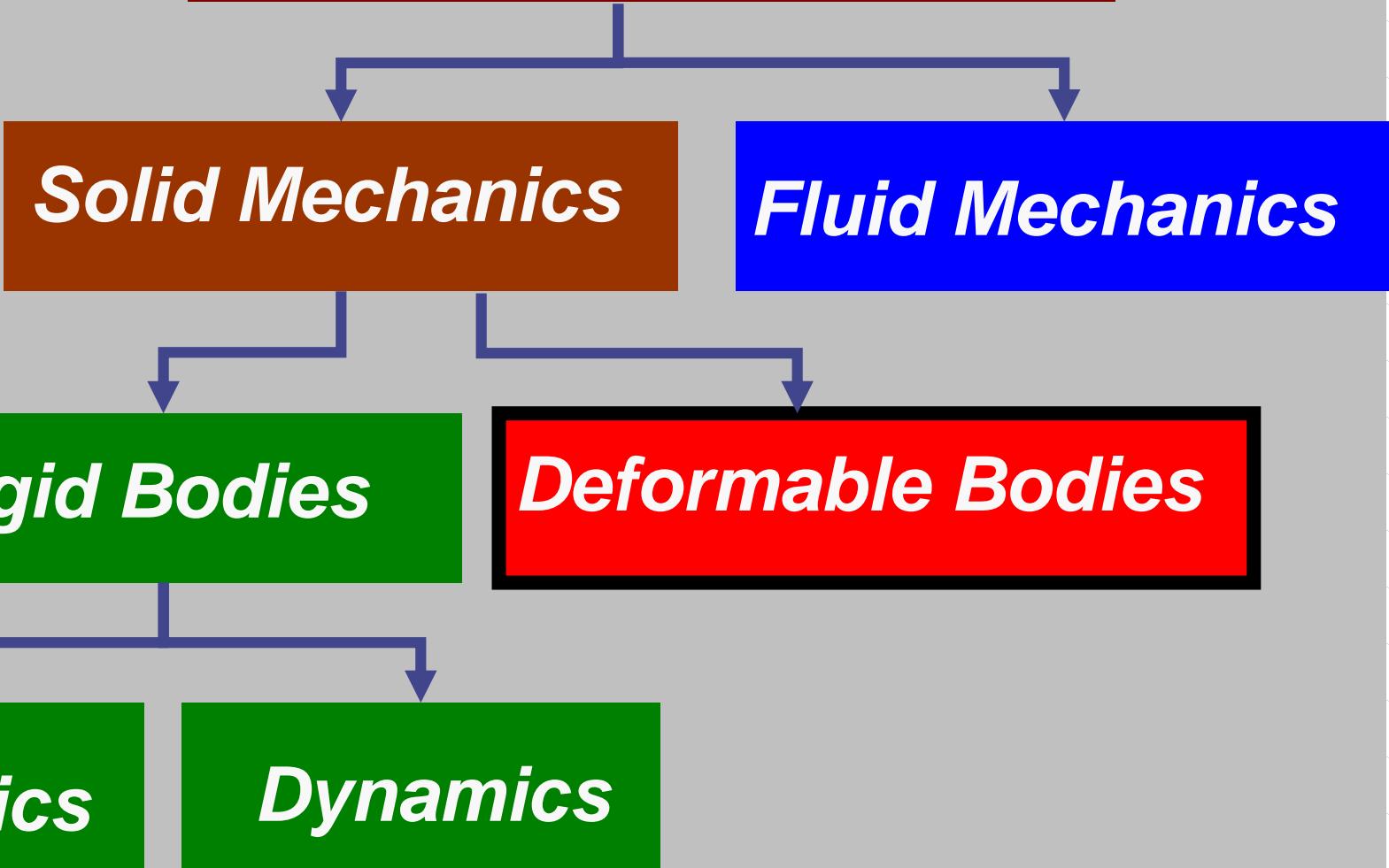


General Principles

DYNAMICS, AGE-2320

Ahmed M El-Sherbeeny, PhD


Spring-2026

Definition

Mechanics:

***Branch of physical sciences
concerned with the state of
rest or motion of bodies
subjected to forces.***

Engineering Mechanics

Rigid Body Mechanics

- ❖ **Statics – Bodies at rest**
- ❖ **Dynamics – Accelerated motion of bodies**

Statics

- Depends on geometry and forces

Dynamics

- Accurate Measurement of time

Basic Quantities

Length

- meter
- foot

Time

- second

Mass

- kilogram
- slug

Force

- newton
- pound

Length

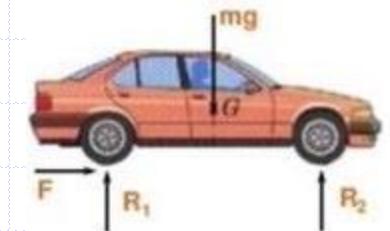
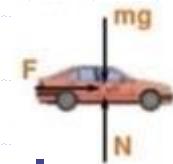
Needed to locate the position of a point in space and describe the size of a physical system.

Time

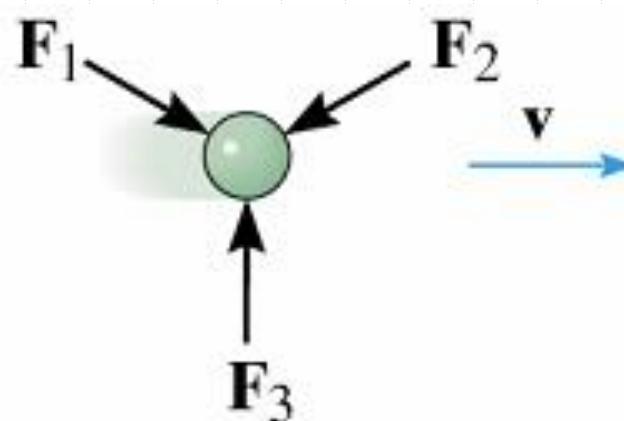
Conceived as a succession of events. Concepts of STATICS are time independent.

Mass

A property of matter by which we can compare the action of one body to another. This property manifests itself as a gravitational attraction between two bodies and provide a qualitative measure of the resistance of matter to a change in velocity.



Force

Generally considered as a push or a pull exerted by one body on another. Interaction occurs when there is direct contact between the bodies. Gravitational, electrical and magnetic forces do not require direct contact. Force is characterized by magnitude, direction and point of application.


Idealizations

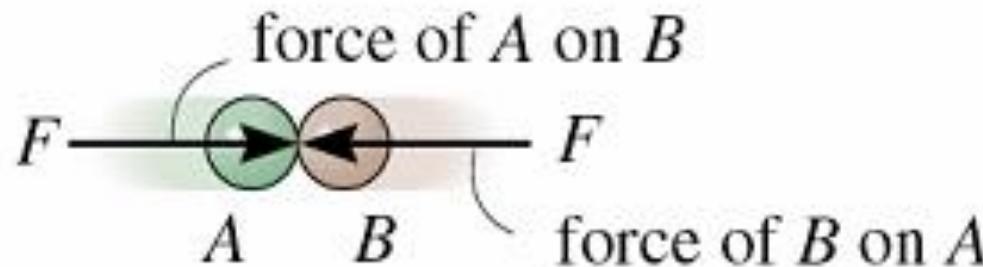
1. Particle - an object having mass but the size is neglected.
2. Rigid Body - a combination of a large number of particles which remain in a fixed position relative to each other, both before and after the application of a force.

Newton's Three Laws of Motion

First Law: A particle originally at rest, or moving in a straight line with constant velocity, will remain in this state provided the particle is not subjected to unbalanced forces.

Equilibrium

Newton's Three Laws of Motion


Second Law: A particle acted upon by an unbalanced force \mathbf{F} experiences an acceleration \mathbf{a} that has the same direction as the force and a magnitude that is directly proportional to the force. If \mathbf{F} is applied to a particle of mass m then: $\mathbf{F} = m\mathbf{a}$.

Accelerated motion

Newton's Three Laws of Motion

Third Law: The mutual forces of action and reaction between two particles are equal, opposite and collinear.

Action – reaction

Newton's Laws of Gravitational Attraction

$$F = G \frac{m_1 m_2}{r^2}$$

$$G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{kg}^2$$

Where:

F = force of gravitation

G = universal constant of gravitation

m_1, m_2 = mass of two particles

r = distance between two particles

Weight

$$W = G \frac{m_1 m_2}{r^2}$$

$$W = G \frac{m m_2}{r^2}$$

$$W = mG \frac{m_2}{r^2}$$

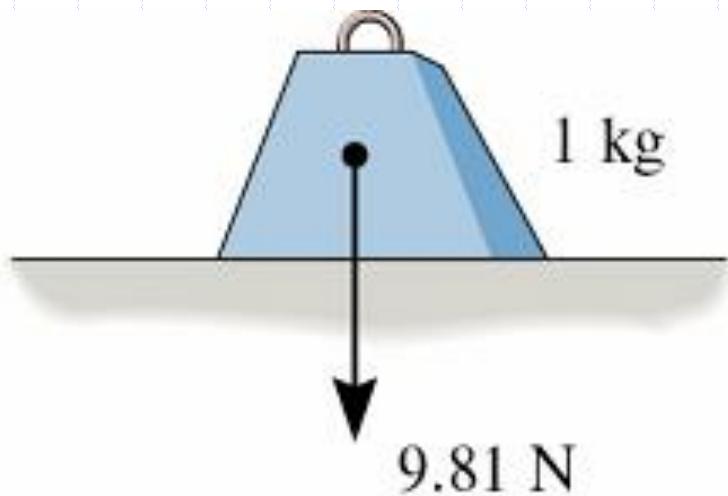
m = mass of object

m_2 = mass of earth

**r = distance from
center of earth to
particle**

Units

1. Basic quantities (force, mass, length, time) are related by Newton's second law.
2. Units used to measure quantities are not all independent.
3. Three of four units, called **base** units, are arbitrarily defined and the fourth is derived.


SI Units

1. Modern version of metric system.
2. Base units are length, time and mass, meter (m), second (s), and kilogram (kg)
3. Acceleration of gravity:

$$g = 9.81 \frac{\text{m}}{\text{s}^2}$$

SI Units

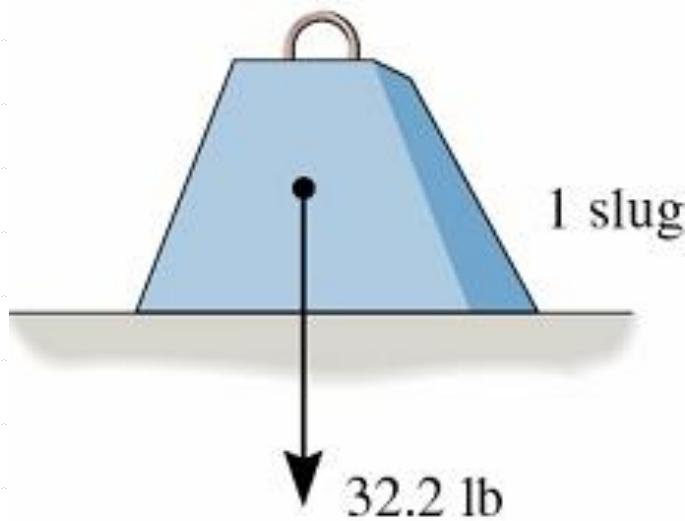
4. Force is derived quantity measured in unit called a **newton**

$$1 \text{ N} = 1 \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$$

$$F=ma$$

With arrows pointing to the variables:

- N (Newton) points to the "N" in N
- kg (kilogram) points to the "kg" in kg
- m/s^2 (meter per second squared) points to the m/s^2 in m/s^2


U.S. Customary Units (fps)

1. Base units are length, time and force.
2. feet (ft), second (s), and pound (lb)
3. Acceleration of gravity:

$$g = 32.2 \text{ ft/s}^2$$

U.S. Customary Units (fps)

4. Mass is derived quantity measured in a unit called a **slug**:

$$1 \text{ slug} = 1 \frac{\text{lb} \cdot \text{s}^2}{\text{ft}}$$

$$m = F / a$$

slug lb ft/s²

Systems of Units

Name

Length

Time

Mass

Force

SI

meter
(m)

second
(s)

kilogram
(kg)

newton
(N)

US
Customary

foot
(ft)

second
(s)

slug
(lb·s²/ft)

pound
(lb)

Unit Conversions

Force : $1 \text{ lb} = 4.4482 \text{ N}$

Mass : $1 \text{ slug} = 14.5938 \text{ kg}$

Length : $1 \text{ ft} = 0.3048 \text{ m}$

Note, $1 \text{ slug} = 32.2 \text{ lbfm}$

Prefixes for SI units

	Exponential form	Prefix	SI symbol
Multiple			
1,000,000,000	10^9	giga	G
1,000,000	10^6	mega	M
1,000	10^3	kilo	k
Submultiple			
0.001	10^{-3}	milli	m
0.000001	10^{-6}	micro	μ
0.00000001	10^{-9}	nano	n

Dimensional Homogeneity

Each of the terms of an equation must be expressed in the same units.

$$s = v t + 1/2 a t^2$$

s is position in meters

v is velocity in m/s

a is acceleration in m/s²

t is time in seconds

$$m = m/s \cdot s + m/s^2 \cdot s^2 = m$$

Procedure for Analysis

1. Read the problem carefully and correlate the actual physical situation with the theory studied
2. Draw necessary diagrams and tables
3. Apply relevant principles, generally in mathematical form

Procedure for Analysis

4. Solve the equations algebraically (without numbers) as far as possible, then obtain a numerical answer
5. Be sure to use a consistent set of units
6. Report the answer with no more significant figures than the accuracy of the given data
7. Decide if answer seems reasonable
8. Think about what the problem taught you!

Important Points

1. Statics is the study of bodies at rest or moving with constant velocity
2. A particle has mass but a size that can be neglected
3. A rigid body does not deform under load
4. Concentrated forces are assumed to act at a point on a body

Important Points

1. Newton's three laws of motion must be memorized!
2. Mass is a property of matter that does not change from one location to another
3. Weight is the gravitational attraction of the earth on a body or quantity of mass. Its magnitude depends on the location of the mass

Important Points

1. In the SI system the unit of force is the newton. It is a derived quantity. Mass, length and time are the base quantities
2. In the SI system prefixes are used to denote large or small numerical quantities of a unit
3. Perform numerical calculation to several significant figures and report answers to three significant figures
4. Be sure that all equations are dimensionally homogeneous