1 - Introduction and Overview of Manufacturing

Introduction to Manufacturing, AGE-1320 Ahmed M El-Sherbeeny, PhD Fall-2025

- 2. Materials in Manufacturing
- 3. Manufacturing Processes
- 4. Production Systems

1- What is manufacturing?

"act of making something (a product) from raw materials"

- It produces goods that support human beings and improve their standard of life
- Economic growth for any country depends mainly on manufacturing
- Manufacturing creates jobs
- Manufactured goods are essential for the service industries
- Manufacturing is the foundation of global "Great Power"

Manufacturing is Important

- Technologically
- Economically
- Historically

What is technology?

Technology - the <u>application of science</u> to provide society and its members with those things that <u>are needed</u> or desired

Technology provides the products that help our society and its members live better

What do these products have in common?

Manufacturing - Economically Important

Manufacturing is <u>one</u> way by which nations create <u>material wealth</u>

U.S. economy:	
<u>Sector</u>	% of <u>GNP*</u>
Manufacturing	~10%
Agriculture, minerals, etc.	~6%
Construction & utilities	~4%
Service sector – retail, transportation, banking, communication, education, and government * GNP= Gross Net Product	~80%

Final products made by manufacturing industries can be divided into two major classes:

- Consumer goods products purchased directly by consumers (e.g., cars, personal computers, TVs, tires, etc.)
- 2. Capital goods products purchased by companies to produce goods and/or provide services (e.g., aircraft, trucks and buses, machine tools, construction equipment)

What is Manufacturing?

The word *manufacture* is derived from two Latin words *manū* (hand) and *factum* (made); the combination means "made by hand"

 Most <u>modern manufacturing operations</u> are accomplished by <u>mechanized and automated</u> <u>equipment</u> that is supervised by human

workers

What is a Manufacturing Process?

 Process: a series of actions that are taken to achieve a desired result

 Manufacturing process: the steps and tools used to convert the raw materials or the semi-product into semi-product or final

products

Manufacturing - Technologically

Application of physical and chemical processes to alter the geometry, properties, and/or appearance of a starting material to make parts or products

- Manufacturing also includes <u>assembly</u>
- Almost always carried out as a <u>sequence of operations</u>

Manufacturing - Economically

Manufacturing *adds value* to the material by changing its shape or properties, or by combining it with other materials (this is done by means of one or more processing and/or assembly operations)

Figure 1.1 (b)
Manufacturing
as an economic
process

Industries

Manufacturing Industries

Industry consists of enterprises and <u>organizations</u> that produce or <u>supply goods and services</u>

Primary industries - those that <u>cultivate and exploit</u> <u>natural resources</u>, e.g., farming, mining

Secondary industries - take the <u>outputs of primary</u> <u>industries and convert them into</u> consumer and capital <u>goods</u> - <u>manufacturing</u> is the principal activity, other examples: <u>construction</u>, and <u>electric power generation</u>

Tertiary industries - service sector, e.g. banking

Tertiary Sector

- For our purposes, manufacturing means production of hardware
 - Nuts and bolts, forgings, cars, airplanes, digital computers, plastic parts, and ceramic products

The quantity of products Q made by a factory has an important influence on the way its people, facilities, and procedures are organized

Annual production quantities can be classified into three ranges:

Production range
Low production
Medium production
High production

Annual Quantity Q
1 to 100 units
100 to 10,000 units
10,000 to millions

Product Variety P

Product variety P refers to different product types or models produced in the plant.

- Different products have different features
 - They are intended for different markets
 - Some have more parts than others
- When the number of product types made in the factory is high, this indicates high product variety

P versus Q in Factory Operations

Figure 1.2 P-Q Relationship

More About Product Variety

Although *P* is a quantitative parameter, it is much less exact than *Q* because details on how much the designs differ is not captured simply by the number of different designs

Soft product variety - small differences between products, e.g., between car models made on the same production line, with many common parts among models

 Hard product variety - products differ substantially, e.g., between a small car and a large truck, with few common parts (if any)

Manufacturing Capability

A manufacturing plant consists of processes and systems (and people, of course) designed to transform a certain limited range of materials into products of increased value.

The three building blocks - materials, processes, and systems - are the subject of modern manufacturing.

Manufacturing capability includes:

- 1. Technological processing capability
- 2. Physical product limitations
- 3. Production capacity

1. Technological Processing Capability

The available set of manufacturing processes in the plant (or company)

Certain manufacturing <u>processes</u> <u>are suited</u>
 to <u>certain materials</u>
 (By specializing in certain processes, the plant is also

specializing in certain materials)

 Includes not only the <u>physical processes</u>, but also the <u>expertise of the plant personnel</u>

Examples:

A machine shop cannot roll steel
A steel mill cannot build cars

2. Physical Product Limitations

Given a plant with a certain set of processes, there are size and weight limitations on the parts or products that can be made in the plant

- Product size and weight affect:
 - Production equipment
 - Material handling equipment

Defined as the maximum quantity that a plant can produce in a given time period (e.g., month or year) under assumed operating conditions

Operating conditions refer to <u>number of shifts</u> <u>per week</u>, <u>hours per shift</u>, <u>direct labor manning</u> <u>levels</u> in the plant, and so on

<u>Capacity is measured</u> in terms of output units, such as tons of steel or number of cars produced by the plant

2- Materials in Manufacturing

Materials in Manufacturing

Most engineering materials can be classified into one of <u>three basic categories</u>:

- 1. Metals
- 2. Ceramics
- 3. Polymers

Their chemistries and also their mechanical and physical properties are different

These <u>differences affect the manufacturing</u>
 <u>processes</u> that can be used to produce products from them

1. Metals

Usually *alloys*, which are composed of two or more elements, at least one of which is metallic

Two basic groups:

Ferrous metals - based on iron, comprises about 75% of metal tonnage in the world:

Cast iron = Fe-C alloy (2% to 4% C)

2. Ceramics

Compounds containing metallic (or semi-metallic) and nonmetallic elements

- Typical <u>nonmetallic elements</u> are <u>oxygen</u>, <u>nitrogen</u>, and <u>carbon</u>
- For processing, ceramics divide into:
 - 1. Crystalline ceramics includes:
 - Traditional ceramics, such as clay (hydrous aluminum silicates)
 - Modern ceramics, such as alumina (Al₂O₃)
 - Glasses mostly based on silica
 (SiO₂)

Compound formed of repeating structural units called *mers*, whose atoms share electrons to form very large

molecules

3. Polymers

Three categories:

 Thermoplastic polymers - can be subjected to multiple heating and cooling cycles without altering molecular structure

 Thermosetting polymers - molecules chemically transform (cure) into a rigid structure – cannot be reheated

3. Elastomers - shows significant elastic behavior

In addition- Composites

Nonhomogeneous mixtures of the other three basic types rather than a unique category

Figure 1.3 Venn diagram of three basic material types plus composites

Composites

Material consisting of two or more phases that are processed separately and then bonded together to achieve properties superior to its constituents

Phase - homogeneous mass of material, such as grains of identical unit cell structure in a solid metal

Usual structure consists of particles or fibers of one phase mixed in a second phase

Properties depend on <u>components</u>, <u>physical shapes of components</u>, and <u>the way they are combined</u> to form the final material

Composites

Future Promise of Smart Materials and Structure

3- Manufacturing Processes

- Processing operations transform a work material from
 one state of completion to a
 more advanced state
 - Operations that change the geometry, properties, or appearance of the starting material
 - Assembly operations join two or more components to create a new entity

Figure 1.4 Classification of manufacturing processes

Processing Operations

Alters a material's shape, physical properties, or appearance in order to add value

Three categories of processing operations:

- Shaping operations alter the geometry of the starting work material
- Property-enhancing operations improve <u>physical properties</u> without changing shape
- 3. Surface processing operations to clean, treat, coat, or deposit material on exterior surface of the work

Shaping Processes – Four Categories

- Solidification processes starting material is a heated liquid or semifluid
- Particulate processing starting material consists of powders
- 3. Deformation processes starting material is a ductile solid (commonly metal)
- Material removal processes starting material is a ductile or brittle solid

Starting material is heated sufficiently to transform it into a liquid or highly plastic state

Examples: metal casting, plastic molding

 Usually involves pressing and sintering, in which powders are first <u>compressed</u> and then <u>heated to bond</u> the individual particles

Steps: Pressing and sintering

Click to see figure 1-4 again

Sintering is a method for making objects from powder, by heating the material (below its melting point) until its particles adhere to each other.

3- Deformation Processes

Starting workpart is shaped by application of forces that exceed the yield strength of the material

Examples: (a) <u>forging</u>, (b) <u>extrusion</u>

A press machine performs extrusion.

Excess material removed from the starting piece so what remains is the desired geometry

 Examples: machining such as <u>turning</u>, <u>drilling</u>, and <u>milling</u>; also <u>grinding</u> and nontraditional processes

Waste in Shaping Processes

Desirable to minimize waste in part shaping

- Material removal processes are wasteful in unit operations, simply by the way they work
- Most casting, molding, and particulate processing operations waste little material
- Terminology for minimum waste processes:
 - Net shape processes when most of the starting material is used and no subsequent machining is required
 - Near net shape processes when minimum amount of machining is required

Click to see figure 1-4 again

near Net Shape Forming

Property-Enhancing Processes

Performed to improve mechanical or physical properties of work material

- Part shape is not altered, except unintentionally
 - Example: unintentional warping of a heat treated part

- Examples:
 - Heat treatment of metals and glasses
 - Sintering of powdered metals and ceramics

Surface Processing Operations

Cleaning - chemical and mechanical processes to remove dirt, oil, and other contaminants from the surface

Surface treatments - mechanical working such as <u>sand blasting</u>, and physical processes like <u>diffusion</u>

Coating and thin film deposition - coating exterior surface of the workpart

Click to see figure 1-4 again

Assembly Operations

Two or more separate parts are joined to form a new entity

- Joining processes create a permanent joint
 - Welding, brazing, soldering, and adhesive bonding
- Mechanical assembly fastening by mechanical methods
 - Threaded fasteners (screws, bolts and nuts); press fitting, expansion fits

Manufacturing process selection

Factors affecting selection of manufacturing process:

- Product materials
- Product size and shape
- Product quantity
- Product quality (accuracy and surface finish) and mechanical properties
- Energy consumption
- Waste of material
- Material cost
- Equipment & tooling cost

We can classify manufacturing processes into three broad categories

Formative Manufacturing

Subtractive Manufacturing

Additive Manufacturing

Production Systems

People, equipment, and procedures used for the combination of materials and processes that constitute a firm's manufacturing operations

A manufacturing firm must have systems and procedures to efficiently accomplish its type of production

Two categories of production systems:

- 1. Production facilities
- 2. Manufacturing support systems

Both categories include people (people make the systems work) Chapter1-Part2

Engineer's Duties in Manufacturing

Major Duties and Responsibilities:

- Responsible for the manufacturing system design (facility layout, equipment layout, etc.)
- Select and coordinate specific processes, tool, and equipment for a certain product
- Develop and select materials based on desired material properties, manufacturing processes, and customer requirements

Production systems

Production systems

Production facilities

Low production: Job shop

Medium production: Batch production

and cellular manufacturing

High production: quantity production

and flow line production

Manufacturing support systems

Manufacturing engineering Production planning and control Quality control

- Production facilities "touch" the product
- Includes the way the equipment is arranged in the factory the plant layout

Equipment usually organized into logical groupings, called *manufacturing systems*

Automated production line

Machine cell consisting of an industrial robot and two machine tools

Facilities versus Product Quantities

- A company designs its manufacturing systems and organizes its factories to serve the particular mission of each plant
- Certain types of production facilities are recognized as the most appropriate for a given type of <u>manufacturing</u>:
 - 1. Low production 1 to 100
 - 2. Medium production 100 to 10,000
 - 3. High production -10,000 to >1,000,000
- Different facilities are required for each of the three quantity ranges

Low Production

Job shop is the term used for this type of production facility

 A job shop makes low quantities of specialized and customized products

 Products are typically complex, e.g., space capsules, prototype aircraft, special machinery

- Equipment in a job shop is general purpose
- Labor force is highly skilled
- Designed for maximum flexibility

Two different types of facilities, depending on product variety:

Batch production

Suited to hard product variety

Setups required between batches

Cellular manufacturing

- Suited to <u>soft product variety</u>
- Worker cells organized to process parts without setups between different part styles

High Production

- Often referred to as mass production
 - High demand for product
 - Manufacturing system dedicated to the production of that product
- Two categories of mass production:
 - 1. Quantity production
 - 2. Flow line production

Quantity Production

Mass production of single parts on single machine or small numbers of machines

Typically involves standard machines equipped with special tooling

 Equipment is dedicated full-time to the production of one part or product type

Typical layouts used in quantity production are process layout and cellular layout

Flow Line Production

Multiple machines or workstations arranged in sequence, e.g., production lines

- Product is complex
 - Requires multiple processing and/or assembly operations
- Work units are physically moved through the sequence to complete the product
- Workstations and equipment are designed specifically for the product to maximize efficiency

A company must organize itself

- to design the processes and equipment,
- plan and control production, and
- satisfy product quality requirements

Accomplished by manufacturing support systems - people and procedures by which a company manages its production operations

Typical departments:

- Manufacturing engineering
- 2. Production planning and control
- 3. Quality control

Overview of Major Topics

Figure 1.10 Overview of production system and major topics in *Fundamentals of Modern Manufacturing*.

A spectacular scene in steelmaking is charging of a basic oxygen furnace, in which molten pig iron produced in a blast furnace is poured into the BOF (Basic Oxygen Furnace). Temperatures are around 1650°C (3000 ° F).

A machining cell consisting of two horizontal machining centers supplied by an in-line pallet shuttle (photo courtesy of Cincinnati Milacron).

A robotic arm performs unloading and loading operation in a turning center using a dual gripper (photo courtesy of Cincinnati Milacron).

Metal chips fly in a high speed turning operation performed on a computer numerical control turning center (photo courtesy of Cincinnati Milacron).

Chapter1- Part2

Photomicrograph of the cross section of multiple coatings of titanium nitride and aluminum oxide on a cemented carbide substrate (photo courtesy of Kennametal Inc.).

A batch of silicon wafers enters a furnace heated to 1000°C (1800°F) during fabrication of integrated circuits under clean room conditions (photo courtesy of Intel Corporation).

Two welders perform arc welding on a large steel pipe section (photo courtesy of Lincoln Electric Company).

Automated dispensing of adhesive onto component parts prior to assembly (photo courtesy of EFD, Inc.).

Chapter1- Part2

Assembly workers on an engine assembly line (photo courtesy of Ford Motor Company).

Assembly operations on the Boeing 777 (photo courtesy of Boeing Commercial Airplane Co.).

