

College of Science Department of Biochemistry

Protein Biochemistry (BCH 303)

Introduction-Course description

BCH 303 PROTEIN BIOCHEMISTRY

- Course Symbol & No. : BCH 303
- Credit Hours
- Prerequisite
- Class schedule
- Class location
- Examinations

- : 3 (2+0+2)
- : BCH 202
- : Sunday, Tuesday, 2:00 pm to 3:50 pm.
- : 2B2 building No. 5
- : Two Continuous Assessment Tests (CAT)
- Practical (30 Marks)
- Final (40 Marks)

Course title: Protein Biochemistry	Course number and code: BCH 303	
Previous course requirement: BCH 202	Language of the course: English	
Course level: 4th Level	Effective hours:3 (2+0+2)	

Course description

وصف المقرر:

	oraleo accompany	
	This course covers the structural features of	يغطي هذا المقرر السمات التركيبية للأحماض الأمينية
	natural amino acids, stereo-isomerism, and configuration; their classification, functional	الطبيعية، وتنوع أشكالها الفراغية، وتصنيفها، والمجموعات
	groups and their effect on protein	الوظيفية وتأثيرها على الشكل الفراغي للبروتينات، الأيون
	conformation, zwitterion and pL titration curve; chemical reactions specifying each	ثنائي القطبية، منحنى المعايرة، والتفاعلات الكيميائية المميزة
	amino acid, spectroscopic properties, and	لكل حمض أميني وخصائصها الطيفية، وأهميتها البيولوجية.
	their biological importance. Peptide bond formation, it is regid and planar and	تكوين الرابطة الببتيدية، وشكلها الصلب المستوي،
	biologically active peptides. Protein	والببتيدات النشطة بيولوجياً. تصنيف البروتينات،
	classification, levels of protein structure (primary to quaternary), alpha helix, beta	والمستويات التركيبية لها (الشكل الأولي إلى الرياعي الأبعاد)،
	sheet; protein architecture. Physical and	الحلزون ألفا، ورقة بيتا. بنية البروتين. الخصائص الفيزيائية
	chemical properties. Fibrous vs globular proteins; domains and motifs; Different	والكيميائية. البروتينات الليفية والمكورة. الوظائف المختلفة
	functions of proteins, biosynthesis, folding	للبروتينات، تخليقها الحيوي، الطي. مسخ البروتينات وإعادة
	and the role of molecular chaperons. Protein denaturation and renaturation. Effect of	الشكل لطبيعته. تأثير تركيب البروتين على الارتباط بالمتلازم،
	protein structure on ligand binding, ex.	مثل الهيموجلوبين/02، الجلوبيولين المناعي/الاجسام
	Hemoglobin/O2, immunoglobulins/antigens. Techniques used in amino acid analysis,	المضادة. التقنيات المستخدمة في تحليل الأحماض الأمينية،
	peptide synthesis, protein purification,	تصنيع الببتيدات معملياً، تنقية البروتينات، والتقدير
	quantification, protein sequencing and its role in elucidating the evolutionary	الكعي، وتسلسل البروتينات، طيف الكتلة و تسلسل
	relationships; mass spectrometry.	البروتين ودورها في توضيح العلاقات التطورية.
- 1		

List of Topics	No. of Weeks	Contact hours
Introduction	1	2
Macromolecules; Definitions and introduction		
Amino acids	4	8
Definitions and types of amino acids		
Functions of amino acids		
Properties of amino acids: (Polarity, Stereoisomers, Light		
absorption, Ionization)		
Structure & Classification of standard amino acids	2	4
Functional groups in amino acids		
Protein synthesis	2	4
Post Translation Modification (hydroxylation,		
phosphorylation, methylation, disulfide bridge, etc)		
Protein folding		
Protein Structure	3	6
Peptide Bond (formation, structure, & properties), and		
terminology: amino acids versus residue versus polypeptide &		
proteins		
Protein structure (primary, secondary, tertiary, and		
quaternary)		
Misfolding problem		
Protein denaturation		

List of Topics		Contact hours
Structural classification of proteins: (Fibrous proteins and Globular proteins: representatives of all-alpha, all-beta, and alpha/beta proteins)	3	6
Protein function Functional classifications: enzymes, immunoglobulins, transport (O2, fatty acids), regulatory (hormones etc), structural, & movement, with examples. complex proteins (metal ions, cofactors, lipids, carbohydrates, etc) Introduction to enzymes and metabolism	1	2
Introduction to metabolism Overall Metabolic pathways for protein Urea cycle	1	2
Proteins general methods Protein purification Protein quantification Amino Acid Analysis Protein Sequencing Mass Spectrometry and Proteomics	3	6

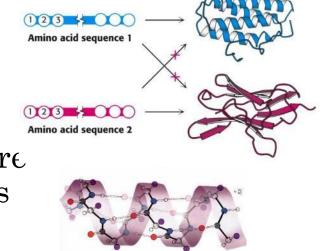
THE MAIN PURPOSE FOR THIS COURSE

- This course aims to familiarize students with basic knowledge of protein biochemistry needed for higher level courses.
- It covers the following:
 - Details of amino acid as the building blocks of protein.
 - Protein synthesis and folding, protein structure, structural and functional classification of proteins,
 - Introduction to enzymes and metabolism.
 - Techniques in protein chemistry and analysis, including Protein purification, Protein quantification, Amino Acid Analysis, Protein Sequencing, Mass Spectrometry and

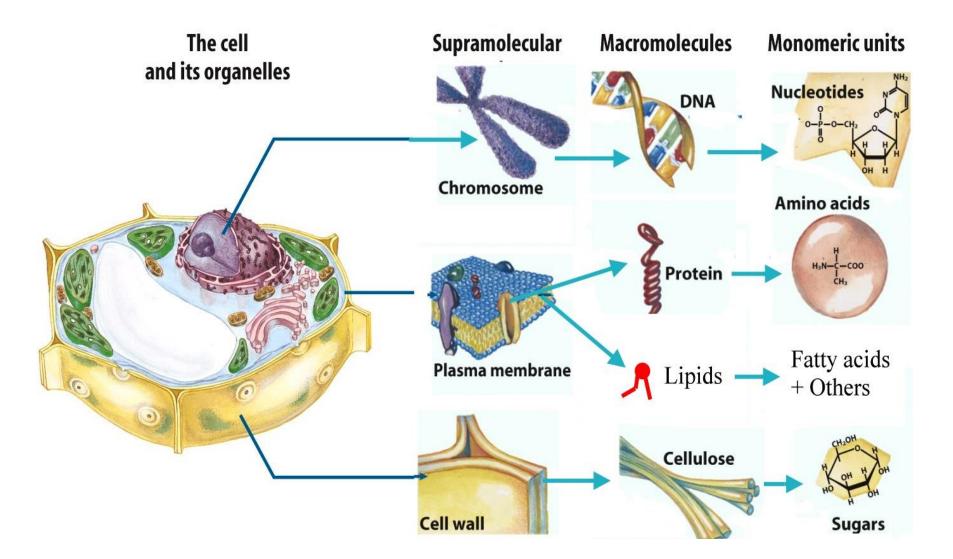
- The practical part will focus on technical skills in biochemistry and will include amino acids detection, protein preparation, analysis of protein structure and some enzymatic assays.

TEXT BOOKS

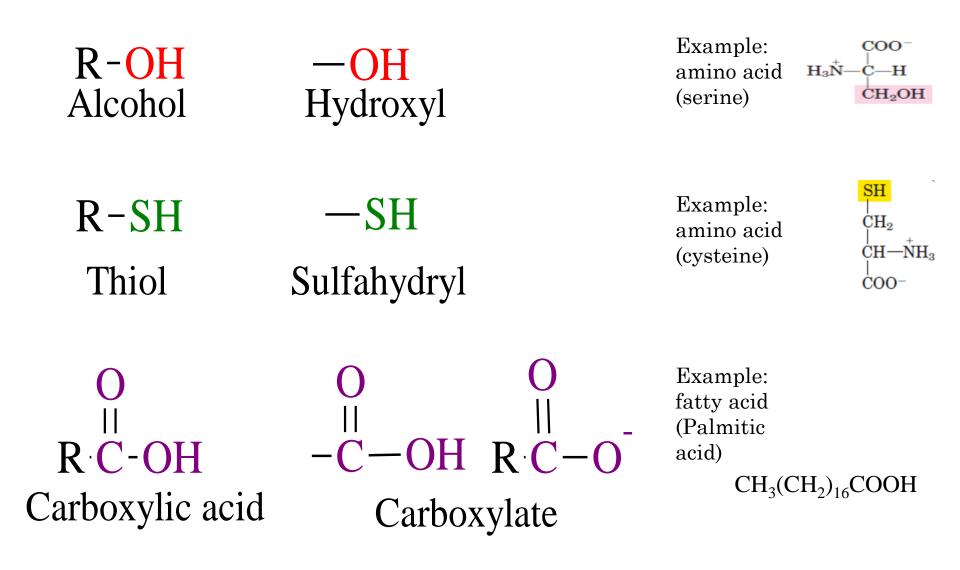
- Lehninger: Principles of Biochemistry
- by DL. Nelson and MI. Cox (latest edition)
- Stryer, L; Biochemistry, W.H. Freeman and company.
- NewYork
- Protein Biochemistry and Proteomics, ISBN 012088545X 9780120885459
- **Proteins: Biochemistry and Biotechnology,2nd** Edition, Gary Walsh, ISBN : 978-0-470-66985-3
- Wiley Blackwell

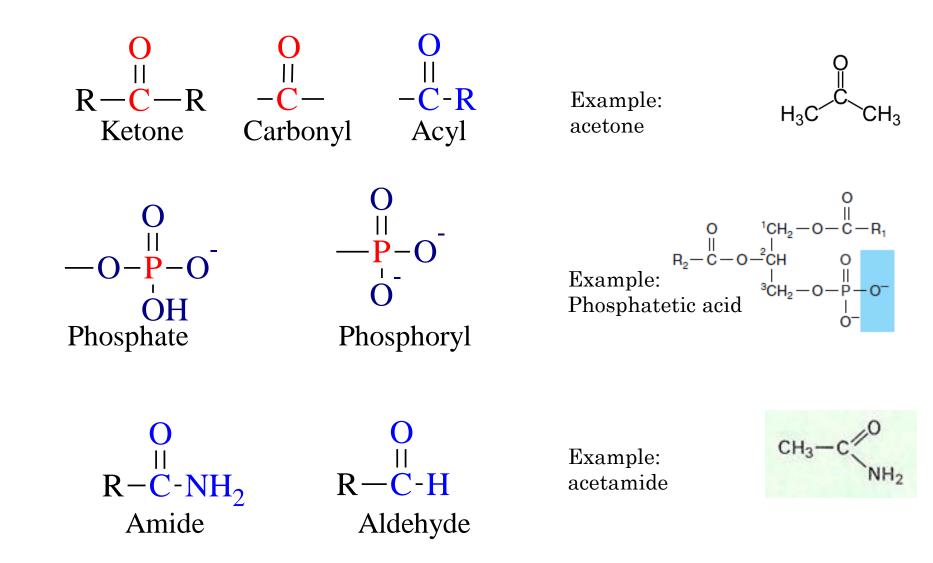

INTRODUCTION TO BIOLOGICAL MACROMOLECULES

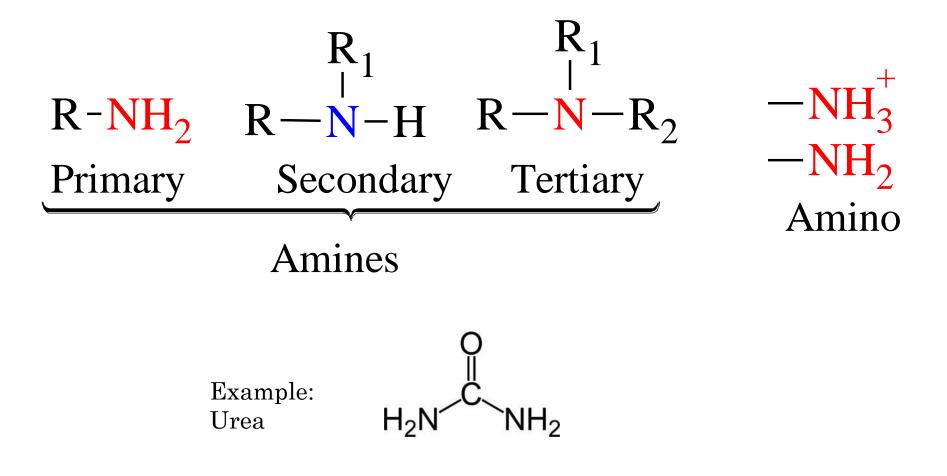
There are 4 major macromolecules (polymers) in the cell formed by condensation of smaller building blocks (monomers) :

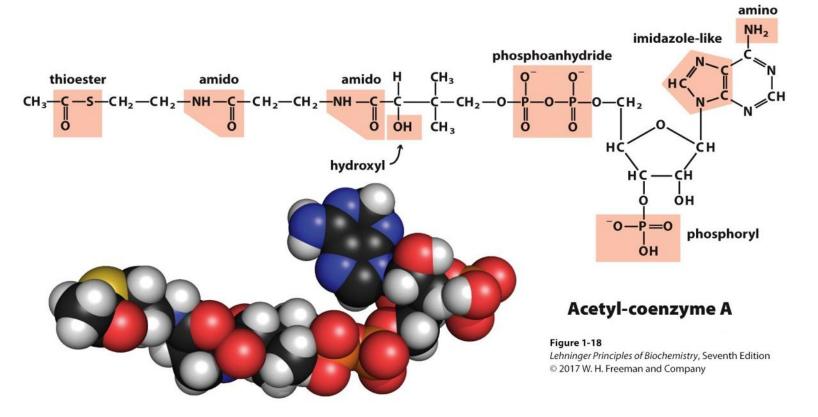

Macromolecule (polymers)	Building blocks (monomers)	Name of bond
Carbohydrate	Monosaccharides	Glycosidic bond
Proteins	Amino acids	Peptide bond
Nucleic acids	Nucleotides	Phospho diester bond
Lipids	Fatty acids + alcohol	Ester bond

CHARACTERISTICS OF BIOLOGICAL MOLECULES


- All macromolecules have a "Sense" or Directionality
 - DNA : $-ATC \neq -CTA$ -
 - Protein: -Gly-Ser- \neq -Ser-Gly-
 - Carbohydrate: -Glu-Gal ≠ -Gal-Glu-
- Macromolecules are Informational:
 - Examples: AUC=Ile; ACU=Thr; UAC=Tyr
- Macromolecules Have Characteristic Three-Dimensional Architecture
- Weak forces maintain biological structure and determine biomolecular interactions


STRUCTURAL LEVELS OF CELL MOLECULES


FUNCTIONAL GROUPS IN BIOCHEMISTRY


FUNCTIONAL GROUPS IN BIOCHEMISTRY (CONT.)

FUNCTIONAL GROUPS IN BIOCHEMISTRY (CONT.)

BIOLOGICAL MOLECULES TYPICALLY HAVE SEVERAL FUNCTIONAL GROUPS

Several common functional groups in a single biomolecule. Acetyl-coenzyme A (often abbreviated as acetyl-CoA) is a carrier of acetyl groups in some enzymatic reactions. The functional groups are screened in the structural formula. As we will see in Chapter 2, several of these functional groups can exist in protonated or unprotonated forms, depending on the pH. In the space-filling model, N is blue, C is black, P is orange, O is red, and H is white. The yellow atom at the left is the sulfur of the critical thioester bond between the acetyl moiety and coenzyme A.