LINEAR ALGEBRA

MATH 244 FAHD M ALSHAMMARI Welcome to a Fascinating Linear Algebraic Journey

Course Outline and Organization

Course Outline

- Systems of Linear Equations; Gauss and Gauss Jordan elimination; homogeneous systems; Cramer's Rule.
- **Matrices** and matrix operations; elementary row operations; inverse of a matrix; special matrices.
- **Determinants**; properties of determinants; adjoint and its properties.
- Vector Spaces; subspaces; combinations and span; dependence independence; basis and dimension; coordinates; change of basis; rank and nullity.
- Inner Product Spaces; orthogonal and normal sets of vectors; orthonormal basis; Gram-Schmidt orthonormalization process.
- **Linear Transformations**; basic properties; kernel and image spaces; matrix of linear transformation.
- Eigenvalues, Eigenvectors and Diagonalization of a matrix.

Recommended Book

Elementary Linear Algebra (Applications Version) by Howard Anton and Chris Rorres, 11th Edition, Wiley, USA, 2014.

Grading

A total of 100 points are eared as follows:

Midterm Exam 1 25 points

Midterm Exam 2 25 points

Quizzes 10 points

Final Exam 40 points

Course Organization

- Using Backboard; ClassPoint; ChatGPT; and other A.I.s
- Interactive Lectures and Exercise sessions.
- Participation is very important. Raise your hand at any point you have a question.
- Attendance is taken regularly in the beginning of class. More than 25% absence causes denial from final exam entry. Being late more than 5 minutes twice counts as 1 absence.
- University Policies, Rules, and Regulations are applied. Find them here, Read them, understand them, and live by them.
- Please inform me and/or the department if you have Special needs or require any Accommodations.
- **Finally**, I am really looking forward for an exciting semester together. So, sit back relax and let's enjoy the course.

What is Linear Algebra?

What is linear algebra?

Linear

- having to do with lines/planes/etc.
- For example, x + y + 3z = 7, not sin, $\log_{10} x^2$, etc.

Algebra

- solving equations involving numbers and symbols
- from al-jebr (Arabic), meaning reunion of broken parts
- ▶ 9th century Abu Ja'far Muhammad ibn Muso al-Khwarizmi

Why is Linear Algebra?

Civil Engineering: How much traffic flows through the four labeled segments?

system of linear equations:

$$w + 120 = x + 250$$

 $x + 120 = y + 70$
 $y + 530 = z + 390$
 $z + 115 = w + 175$

Traffic flow (cars/hr)

Chemistry: Balancing reaction equations

$$\underline{x}$$
 $C_2H_6 + \underline{y}$ $O_2 \rightarrow \underline{z}$ $CO_2 + \underline{w}$ H_2O

**** system of linear equations, one equation for each element.

$$2x = z$$
$$6x = 2w$$
$$2y = 2z + w$$

Geometry and Astronomy: Find the equation of a circle passing through 3 given points, say (1,0), (0,1), and (1,1). The general form of a circle is $a(x^2 + y^2) + bx + cy + d = 0$.

>>>> system of linear equations:

$$a + b + d = 0$$
 $a + c + d = 0$
 $2a + b + c + d = 0$

Labeling with R^n

All colors you can see can be described by three quantities: the amount of red, green, and blue light in that color. Therefore, we can use the elements of \mathbb{R}^3 to label all colors: the point (.2, .4, .9) labels the color with 20% red, 40% green, and 90% blue.

Data Science:

Table 1 Term-by-Document Matrix of the Four Most Venomous Animals

		Documents			
		Jellyfish	Cobra	Snail	Octopus
Terms	venom	32	44	1	18
	death	9	3	0	2
	danger	6	4	0	4
	survive	2	0	0	1
	Madagascar	0	0	2	0

$$A = \begin{pmatrix} 32 & 44 & 1 & 18 \\ 9 & 3 & 0 & 2 \\ 6 & 4 & 0 & 4 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{pmatrix}$$

Economics:(Simple Production Model):

Suppose a firm produces cars and buses requiring steal and plastic, where:

1 car requires 2 tons of steal and 0.5 ton of plastic

1 bus requires 3 tons steal and 1 ton of plastic

Suppose that 14 tons of steal and 4 tons of plastic are available. Want to know: how many cars and buses can be produced? Is it possible to use all amounts?

Solution: If x_1 be the number of cars and x_2 be the number of buses, then

- the amount of steal needed is $2x_1 + 3x_2$,
- the amount of plastic needed is $0.5x_1 + x_2$.

These amounts should be equal to the amounts bought. Therefore,

$$2x_1 + 3x_2 = 14$$

 $0.5x_1 + x_2 = 4$

Recourses and References

The following are freely available on the web which influenced the slides:

- Interactive Linear Algebra by Dan Margalit and Joseph Rabinoff.
- Courseware freely available at the university of Waterloo faculty of mathematics. https://open.math.uwaterloo.ca/.
- Georgia Tech Math 1554 linear algebra course page which has lots of available material including lecture videos. https://gatech.instructure.com/courses/114544/.
- Lecture notes of William Chen https://www.williamchen-mathematics.info/lnlafolder/lnla.html.