Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

$$
\text { May 1, } 2024
$$

Chapter 8: Parametric Equations and Polar Coordinates

Main Content

(1) Parametric Equations of Plane Curves

- Definitions
- Tangent Lines
- Arc Length and Area of Revolution Surface
(2) Polar Coordinates

■ Definitions

- The Relationship between Cartesian and Polar Coordinates

■ Tangent Line to Polar Curves

- Polar Equations
- Tangent Line to Polar Curves
- Graphs in Polar Coordinates
- Area in Polar Coordinates
- Arc Length and Surface of Revolution in Polar Coordinates

Parametric Equations of Plane Curves

Definition

A plane curve is a set of ordered pairs $(f(t), g(t))$, where f and g are continuous on an interval I.

Definition

Let C be a curve consists of all ordered pairs $(f(t), g(t))$, where f and g are continuous on an interval I. The equations

$$
x=f(t), y=g(t) \text { for } t \in I
$$

are parametric equations for C with parameter t.

Parametric Equations of Plane Curves

Definition

A plane curve is a set of ordered pairs $(f(t), g(t))$, where f and g are continuous on an interval I.

Definition

Let C be a curve consists of all ordered pairs $(f(t), g(t))$, where f and g are continuous on an interval I. The equations

$$
x=f(t), y=g(t) \text { for } t \in I
$$

are parametric equations for C with parameter t.
Example: Consider the plane curve C given by $y=x^{2}$.

$$
\begin{aligned}
& \text { Now, let } x=t \text { and } y=t^{2} \text { for } \\
& -1 \leq t \leq 2 .
\end{aligned}
$$

We have the same graph where $x(t)$ and $y(t)$ are called parametric equations for the curve C with parameter t.

Parametric Equations of Plane Curves

Notes.
(1) The parametric equations give the same graph of $y=f(x)$.
(2) The parametric equations give the orientation of the curve C indicated by arrows and determined by increasing values of the parameter as shown in the previous figure.
(3) To find the parametric equations, we introduce a third variable t. Then, we rewrite x and y as functions of t.

Parametric Equations of Plane Curves

Notes.
(1) The parametric equations give the same graph of $y=f(x)$.

The parametric equations give the orientation of the curve C indicated by arrows and determined by increasing values of the parameter as shown in the previous figure.To find the parametric equations, we introduce a third variable t. Then, we rewrite x and y as functions of t.

Example

Write the curve given by $x(t)=2 t+1$ and $y(t)=4 t^{2}-9$ as $y=f(x)$.

Parametric Equations of Plane Curves

Notes.
(1) The parametric equations give the same graph of $y=f(x)$.
(2)

The parametric equations give the orientation of the curve C indicated by arrows and determined by increasing values of the parameter as shown in the previous figure.
(3) To find the parametric equations, we introduce a third variable t. Then, we rewrite x and y as functions of t.

Example

Write the curve given by $x(t)=2 t+1$ and $y(t)=4 t^{2}-9$ as $y=f(x)$.

Solution:
Since $x=2 t+1$, then $t=(x-1) / 2$.
This implies

$$
\begin{aligned}
y & =4 t^{2}-9 \\
& =4\left(\frac{x-1}{2}\right)^{2}-9 \\
\Rightarrow y & =x^{2}-2 x-8
\end{aligned}
$$

Parametric Equations of Plane Curves

Example

Sketch and identify the curve defined by the parametric equations

$$
x=5 \cos t, \quad y=4 \sin t, \quad 0 \leq t \leq 2 \pi
$$

Parametric Equations of Plane Curves

Example

Sketch and identify the curve defined by the parametric equations

$$
x=5 \cos t, \quad y=4 \sin t, \quad 0 \leq t \leq 2 \pi
$$

Solution:

$$
\begin{aligned}
& x=5 \cos t \Rightarrow \cos t=\frac{x}{5} \\
& y=4 \sin t \Rightarrow \sin t=\frac{y}{4}
\end{aligned}
$$

By using the identity

$$
\cos ^{2} t+\sin ^{2} t=1
$$

we have

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

Thus, the curve is an ellipse.

Parametric Equations of Plane Curves

Example

The curve C is given parametrically $x=\sin t, y=\cos t, 0 \leq t \leq 2 \pi$. Find an equation in x and y, then sketch the graph and indicate the orientation.

Parametric Equations of Plane Curves

Example

The curve C is given parametrically $x=\sin t, y=\cos t, \quad 0 \leq t \leq 2 \pi$. Find an equation in x and y, then sketch the graph and indicate the orientation.

Solution: By using the identity $\cos ^{2} t+\sin ^{2} t=1$, we obtain

$$
x^{2}+y^{2}=1
$$

Therefore, the curve is a circle. The orientation can be indicated as follows:

t	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
x	0	1	0	-1	0
y	1	0	-1	0	1
(x, y)	$(0,1)$	$(1,0)$	$(0,-1)$	$(-1,0)$	$(0,1)$

Note. The arrows on the curve indicate the direction in which the point (x, y) traces the curve as t increases from 0 to 2π.

Tangent Lines

Suppose that f and g are differentiable functions. We want to find the slope of the tangent line to a smooth curve C given by the parametric equations $x=f(t)$ and $y=g(t)$ where y is a differentiable function of x.

■ Chain Rule

$$
\begin{gathered}
y=h(x) \\
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} \\
\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
\end{gathered}
$$

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \text { if } \frac{d x}{d t} \neq 0 \tag{1}
\end{equation*}
$$

Remark

- If $d y / d t=0$ such that $d x / d t \neq 0$, the curve has a horizontal tangent line.
- If $d x / d t=0$ such that $d y / d t \neq 0$, the curve has a vertical tangent line.

Tangent Lines

Example

Find the slope of the tangent line to the curve at the indicated value.

$$
\begin{aligned}
& \text { (1) } x=t+1, y=t^{2}+3 t ; \text { at } t=-1 \\
& \text { (2) } x=t^{3}-3 t, y=t^{2}-5 t-1 \text {; at } t=2 \\
& \text { (3) } x=\sin t, y=\cos t ; \text { at } t=\frac{\pi}{4}
\end{aligned}
$$

Tangent Lines

Example

Find the slope of the tangent line to the curve at the indicated value.
(1) $x=t+1, y=t^{2}+3 t$; at $t=-1$
(2) $x=t^{3}-3 t, y=t^{2}-5 t-1$; at $t=2$
(3) $x=\sin t, y=\cos t$; at $t=\frac{\pi}{4}$

Solution:

(1) The slope of the tangent line at $P(x, y)$ is

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+3}{1}=2 t+3 .
$$

The slope of the tangent line at $t=-1$ is $m=2(-1)+3=1$.

Tangent Lines

Example

Find the slope of the tangent line to the curve at the indicated value.
(1) $x=t+1, y=t^{2}+3 t$; at $t=-1$
(2) $x=t^{3}-3 t, y=t^{2}-5 t-1$; at $t=2$
(3) $x=\sin t, y=\cos t$; at $t=\frac{\pi}{4}$

Solution:

(1) The slope of the tangent line at $P(x, y)$ is

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+3}{1}=2 t+3
$$

The slope of the tangent line at $t=-1$ is $m=2(-1)+3=1$.
(2) The slope of the tangent line at $P(x, y)$ is

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t-5}{3 t^{2}-3} .
$$

The slope of the tangent line at $t=2$ is $m=\frac{2(2)-5}{3(2)^{2}-3}=\frac{-1}{9}$.

Tangent Lines

Example

Find the slope of the tangent line to the curve at the indicated value.
(1) $x=t+1, y=t^{2}+3 t$; at $t=-1$
(2) $x=t^{3}-3 t, y=t^{2}-5 t-1$; at $t=2$
(3) $x=\sin t, y=\cos t$; at $t=\frac{\pi}{4}$

Solution:

(1) The slope of the tangent line at $P(x, y)$ is

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+3}{1}=2 t+3
$$

The slope of the tangent line at $t=-1$ is $m=2(-1)+3=1$.
(2) The slope of the tangent line at $P(x, y)$ is

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t-5}{3 t^{2}-3}
$$

The slope of the tangent line at $t=2$ is $m=\frac{2(2)-5}{3(2)^{2}-3}=\frac{-1}{9}$.
(3) The slope of the tangent line at $P(x, y)$ is

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-\sin t}{\cos t}=-\tan t
$$

The slope of the tangent line at $t=\frac{\pi}{4}$ is $m=-\tan \frac{\pi}{4}=-1$.

Tangent Lines

Example

Find the equations of the tangent line and the vertical tangent line at $t=2$ to the curve C given parametrically by $x=2 t, \quad y=t^{2}-1$.

Tangent Lines

Example

Find the equations of the tangent line and the vertical tangent line at $t=2$ to the curve C given parametrically by $x=2 t, \quad y=t^{2}-1$.

Solution: The slope of the tangent line at $P(x, y)$ is

$$
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t}{2}=t
$$

The slope of the tangent line at $t=2$ is $m=2$.

The point corresponding to $t=2$ is $\left(x_{0}, y_{0}\right)=(4,3)$. Thus, the equations of the tangent line is

$$
y-3=2(x-4) \quad \text { Point-Slope form: } y-y_{0}=m\left(x-x_{0}\right)
$$

Since the slope of the tangent line at $t=2$ is $m=2$, then the slope of the vertical tangent line is $\frac{-1}{m}=\frac{-1}{2}$.
Thus, the equation of the vertical tangent line is

$$
y-3=-\frac{1}{2}(x-4)
$$

Tangent Lines

Let the curve C has the parametric equations $x=f(t)$ and $y=g(t)$ where f and g are differentiable functions. To find the second derivative $\frac{d^{2} y}{d x^{2}}$, we apply the formula:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{d\left(y^{\prime}\right)}{d x}=\frac{d y^{\prime} / d t}{d x / d t} \tag{2}
\end{equation*}
$$

Note that $\frac{d^{2} y}{d x^{2}} \neq \frac{d^{2} y / d t^{2}}{d^{2} x / d t^{2}}$.

Example

If $x=t, y=t^{2}-1$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=1$.

Tangent Lines

Let the curve C has the parametric equations $x=f(t)$ and $y=g(t)$ where f and g are differentiable functions. To find the second derivative $\frac{d^{2} y}{d x^{2}}$, we apply the formula:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{d\left(y^{\prime}\right)}{d x}=\frac{d y^{\prime} / d t}{d x / d t} \tag{2}
\end{equation*}
$$

Note that $\frac{d^{2} y}{d x^{2}} \neq \frac{d^{2} y / d t^{2}}{d^{2} x / d t^{2}}$.

Example

If $x=t, y=t^{2}-1$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=1$.
Solution: $\frac{d y}{d t}=2 t, \quad \frac{d x}{d t}=1$

$$
\begin{gathered}
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t}{1}=2 t \Rightarrow \text { at } t=1, \text { we have } \frac{d y}{d x}=2(1)=2 \\
\frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime} / d t}{d x / d t}=\frac{2}{1}=2 \Rightarrow \text { at } t=1, \text { we have } \frac{d^{2} y}{d x^{2}}=2
\end{gathered}
$$

Arc Length and Area of Revolution Surface

Example

If $x=\sin t, y=\cos t$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{3}$.

Arc Length and Area of Revolution Surface

Example

If $x=\sin t, y=\cos t$, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{3}$.
Solution: $\frac{d y}{d t}=-\sin t, \quad \frac{d x}{d t}=\cos t$

$$
\begin{gathered}
y^{\prime}=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-\sin t}{\cos t}=-\tan t \Rightarrow \text { at } t=\frac{\pi}{3}, \text { we have } \frac{d y}{d x}=-\sqrt{3} \\
\frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime} / d t}{d x / d t}=\frac{-\sec ^{2} t}{\cos t}=-\sec ^{3} t \Rightarrow \text { at } t=\frac{\pi}{3}, \text { we have } \frac{d^{2} y}{d x^{2}}=-8
\end{gathered}
$$

Arc Length and Area of Revolution Surface

Theorem

Let C be a smooth curve has the parametric equations $x=f(t), y=g(t)$ where $a \leq t \leq b$, and f^{\prime} and g^{\prime} are continuous. Assume that the curve C does not intersect itself, except possibly at the point corresponding to $t=a$ and $t=b$.
(1) The arc length of the curve is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

(2) If $y \geq 0$ over $[a, b]$, the surface area generated by revolving C about x-axis is

$$
S . A=2 \pi \int_{a}^{b} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

(3) If $x \geq 0$ over $[a, b]$, the surface area generated by revolving C about y-axis is

$$
S . A=2 \pi \int_{a}^{b} x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Arc Length and Area of Revolution Surface

Example

Find the length of the curve $x=e^{t} \cos t, \quad y=e^{t} \sin t, \quad 0 \leq t \leq \frac{\pi}{2}$.

Arc Length and Area of Revolution Surface

Example

Find the length of the curve $x=e^{t} \cos t, \quad y=e^{t} \sin t, \quad 0 \leq t \leq \frac{\pi}{2}$.
Solution: We apply $L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$. First, we find $\frac{d x}{d t}$ and $\frac{d y}{d t}$:

$$
\begin{aligned}
& \frac{d x}{d t}=e^{t} \cos t-e^{t} \sin t \Rightarrow\left(\frac{d x}{d t}\right)^{2}=\left(e^{t} \cos t-e^{t} \sin t\right)^{2} \\
& \frac{d y}{d t}=e^{t} \sin t+e^{t} \cos t \Rightarrow\left(\frac{d y}{d t}\right)^{2}=\left(e^{t} \sin t+e^{t} \cos t\right)^{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} & =e^{2 t} \cos ^{2} t-2 e^{2 t} \cos t \sin t+e^{2 t} \sin ^{2} t+e^{2 t} \sin ^{2} t+2 e^{2 t} \sin t \cos t+e^{2 t} \cos ^{2} t \\
& =e^{2 t}\left(\cos ^{2} t+\sin ^{2} t\right)+e^{2 t}\left(\cos ^{2} t+\sin ^{2} t\right) \quad \text { Remember: } \cos ^{2} t+\sin ^{2} t=1 \\
& =e^{2 t}+e^{2 t}=2 e^{2 t} \\
\Rightarrow \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} & =\sqrt{2} e^{t}
\end{aligned}
$$

When applying $L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$, we have

$$
L=\sqrt{2} \int_{0}^{\frac{\pi}{2}} e^{t} d t=\sqrt{2}\left[e^{t}\right]_{0}^{\frac{\pi}{2}}=\sqrt{2}\left(e^{\frac{\pi}{2}}-1\right)
$$

Arc Length and Area of Revolution Surface

Example

Find the surface area generated by revolving the curve $x=3 \cos t, y=3 \sin t, 0 \leq t \leq \frac{\pi}{3}$ about x-axis.

Arc Length and Area of Revolution Surface

Example

Find the surface area generated by revolving the curve $x=3 \cos t, y=3 \sin t, 0 \leq t \leq \frac{\pi}{3}$ about x-axis.
Solution: Since the revolution is about x-axis, we apply the formula

$$
S . A=2 \pi \int_{a}^{b} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

We find $\frac{d x}{d t}$ and $\frac{d y}{d t}$ as follows:

$$
\begin{aligned}
& \frac{d x}{d t}=-3 \sin t \Rightarrow\left(\frac{d x}{d t}\right)^{2}=9 \sin ^{2} t \\
& \frac{d y}{d t}=3 \cos t \Rightarrow\left(\frac{d x}{d t}\right)^{2}=9 \cos ^{2} t
\end{aligned}
$$

Thus,

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=9\left(\sin ^{2} t+\cos ^{2} t\right)=9 \quad \text { Remember: } \cos ^{2} t+\sin ^{2} t=1
$$

This implies

$$
\begin{aligned}
S . A=2 \pi \int_{0}^{\frac{\pi}{3}} 3 \sin t \sqrt{9} d t=18 \pi \int_{0}^{\frac{\pi}{3}} \sin t d t & =-18 \pi[\cos t]_{0}^{\frac{\pi}{3}} \\
& =-18 \pi\left[\frac{1}{2}-1\right]=9 \pi
\end{aligned}
$$

Polar Coordinates

Definition

The polar coordinate system is a two-dimensional system consisted of a pole and a polar axis (half line). Each point P on a plane is determined by a distance r from a fixed point O called the pole (or origin) and an angle θ from a fixed direction.

■ Cartesian Coordinates (Rectangular Coordinates)

- Polar Coordinate

Polar Coordinates

Notes.

(1) From the definition, the point P in the polar coordinate system is represented by the ordered pair (r, θ) where r, θ are called polar coordinates.
(2) The angle θ is positive if it is measured counterclockwise from the axis, but if it is measured clockwise the angle is negative.

Polar Coordinates

(4) In the Cartesian coordinate system, every point has only one representation while in a polar coordinate system each point has many representations. The following formula gives all representations of a point $P(r, \theta)$ in the polar coordinate system

$$
\begin{equation*}
P(r, \theta+2 n \pi)=P(r, \theta)=P(-r, \theta+(2 n+1) \pi), \quad n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

Polar Coordinates

Example

Plot the points whose polar coordinates are given.
(1) (2) ($1,5 \pi / 4)-3 \pi / 4)$
(3) $(1,13 \pi / 4)$
(4) $(-1, \pi / 4)$

Polar Coordinates

Example

Plot the points whose polar coordinates are given.
(1) $(1,5 \pi / 4)$ (2) $(1,-3 \pi / 4)$
(3) $(1,13 \pi / 4)$
(4) $(-1, \pi / 4)$

Solution:
(1)

Polar Coordinates

Example

Plot the points whose polar coordinates are given.
(1) $(1,5 \pi / 4)$
(2) $(1,-3 \pi / 4)$
(3) $(1,13 \pi / 4)$
(4) $(-1, \pi / 4)$

Solution:
(1)

(2)

$$
p\left(1,-\frac{3 \pi}{4}\right)
$$

Polar Coordinates

Example

Plot the points whose polar coordinates are given.
(1) $(1,5 \pi / 4)$
(2) $(1,-3 \pi / 4)$
(3) $(1,13 \pi / 4)$
(4) $(-1, \pi / 4)$

Solution:

(3)

$$
\begin{aligned}
& \frac{13 \pi}{4}=\frac{5 \pi}{4}+2 \pi \\
& P(r, \theta)=P(r, \theta+2 n \pi) \text { choosing } n=1
\end{aligned}
$$

(2)

$$
p\left(1,-\frac{3 \pi}{4}\right) \quad \frac{-3 \pi}{4} \text { Polar axis }
$$

Polar Coordinates

Example

Plot the points whose polar coordinates are given.
(1) $(1,5 \pi / 4)$
(2) $(1,-3 \pi / 4)$
(3) $(1,13 \pi / 4)$
(4) $(-1, \pi / 4)$

Solution:

(3)

$\frac{13 \pi}{4}=\frac{5 \pi}{4}+2 \pi$
$P(r, \theta)=P(r, \theta+2 n \pi)$ choosing $n=1$
(2)

$$
p\left(1,-\frac{3 \pi}{4}\right)
$$

(4)

The Relationship between Cartesian and Polar Coordinates

Let (x, y) be the Cartesian (rectangular) coordinates and (r, θ) be the polar coordinates of the same point P.
Let the pole be at the origin of the Cartesian coordinates system, and let the polar axis be the positive x-axis and the line $\theta=\frac{\pi}{2}$ be the positive y-axis as shown in the figure.
In the triangle, we have

$$
\begin{aligned}
& \cos \theta=\frac{x}{r} \Rightarrow x=r \cos \theta \\
& \sin \theta=\frac{y}{r} \Rightarrow y=r \sin \theta
\end{aligned}
$$

Hence,

$$
\begin{aligned}
x^{2}+y^{2} & =(r \cos \theta)^{2}+(r \sin \theta)^{2} \\
& =r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =r^{2} \quad\left(\cos ^{2} \theta+\sin ^{2} \theta=1\right)
\end{aligned}
$$

The previous relationships can be summarized as follows:

$$
\begin{gathered}
x=r \cos \theta, \quad y=r \sin \theta, \\
\tan \theta=\frac{y}{x} \text { for } x \neq 0, \\
x^{2}+y^{2}=r^{2}
\end{gathered}
$$

The Relationship between Cartesian and Polar Coordinates

Example

Convert from polar coordinates to rectangular coordinates.
(1) $(1, \pi / 4)$
(2) $(2, \pi)$

The Relationship between Cartesian and Polar Coordinates

Example

Convert from polar coordinates to rectangular coordinates.
(1) $(1, \pi / 4)$
(2) $(2, \pi)$

Solution:
(1) We have $r=1$ and $\theta=\frac{\pi}{4}$. From the formulas given above,

$$
\begin{aligned}
& x=r \cos \theta=(1) \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \\
& y=r \sin \theta=(1) \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Therefore, in the Cartesian coordinates, the point $(1, \pi / 4)$ is represented by $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

The Relationship between Cartesian and Polar Coordinates

Example

Convert from polar coordinates to rectangular coordinates.
(1) $(1, \pi / 4)$
(2) $(2, \pi)$

Solution:
(1) We have $r=1$ and $\theta=\frac{\pi}{4}$. From the formulas given above,

$$
\begin{aligned}
& x=r \cos \theta=(1) \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \\
& y=r \sin \theta=(1) \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Therefore, in the Cartesian coordinates, the point $(1, \pi / 4)$ is represented by $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
(2) We have $r=2$ and $\theta=\pi$, hence

$$
\begin{gathered}
x=r \cos \theta=2 \cos \pi=-2, \\
y=r \sin \theta=2 \sin \pi=0 .
\end{gathered}
$$

The point $(2, \pi)$ is represented in the Cartesian coordinates by $(-2,0)$.

The Relationship between Cartesian and Polar Coordinates

Example

For the given Cartesian point, find one representation in the polar coordinates.
(1) $(1,-1)$
(2) $(2 \sqrt{3},-2)$

The Relationship between Cartesian and Polar Coordinates

Example

For the given Cartesian point, find one representation in the polar coordinates.
(1) $(1,-1)$
(2) $(2 \sqrt{3},-2)$

Solution:
(1) We have $x=1$ and $y=-1$. By using the formulas given above,

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{2} \\
\tan \theta=\frac{y}{x}=-1 \Rightarrow \theta=-\frac{\pi}{4}
\end{gathered}
$$

As mentioned in Note 4, in a polar coordinate system, each point has several representations:
$P(r, \theta)=P(r, \theta+2 n \pi), \quad n \in \mathbb{Z}$.
In the polar coordinates, the point $(1,-1)$ can be represented by $\left(\sqrt{2},-\frac{\pi}{4}\right)$.

$$
P(r, \theta)=P(-r, \theta+(2 n+1) \pi)
$$

The Relationship between Cartesian and Polar Coordinates

Example

For the given Cartesian point, find one representation in the polar coordinates.
(1) $(1,-1)$
(2) $(2 \sqrt{3},-2)$

Solution:
(1) We have $x=1$ and $y=-1$. By using the formulas given above,

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{2} \\
\tan \theta=\frac{y}{x}=-1 \Rightarrow \theta=-\frac{\pi}{4}
\end{gathered}
$$

As mentioned in Note 4, in a polar coordinate system, each point has several representations:

$$
P(r, \theta)=P(r, \theta+2 n \pi), \quad n \in \mathbb{Z} .
$$

In the polar coordinates, the point $(1,-1)$ can be represented by $\left(\sqrt{2},-\frac{\pi}{4}\right)$.

$$
P(r, \theta)=P(-r, \theta+(2 n+1) \pi)
$$

(2) We have $x=2 \sqrt{3}$ and $y=-2$. Hence,

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \Rightarrow r=4, \\
\tan \theta=\frac{y}{x}=\frac{-1}{\sqrt{3}} \Rightarrow \theta=\frac{5 \pi}{6} .
\end{gathered}
$$

Therefore, the point $\left(4, \frac{5 \pi}{6}\right)$ in the polar coordinate system is one representation of the point $(2 \sqrt{3},-2)$.

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(2) $y=-3$
(3) $x^{2}+y^{2}=4$
(4) $y^{2}=9 x$

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
(4) $y^{2}=9 x$

Solution:
(1) $x=7 \Rightarrow r \cos \theta=7$

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
(4) $y^{2}=9 x$

Solution:
(1) $x=7 \Rightarrow r \cos \theta=7 \Rightarrow r=7 \cdot \frac{1}{\cos \theta}$

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
(4) $y^{2}=9 x$

Solution:
(1) $x=7 \Rightarrow r \cos \theta=7 \Rightarrow r=7 \cdot \frac{1}{\cos \theta} \Rightarrow r=7 \sec \theta$.

```
Remember x = r cos 0
```


Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
(4) $y^{2}=9 x$

Solution:
(1) $x=7 \Rightarrow r \cos \theta=7 \Rightarrow r=7 \cdot \frac{1}{\cos \theta} \Rightarrow r=7 \sec \theta$.

$$
\text { Remember } x=r \cos \theta
$$

(2) $y=-3 \Rightarrow r \sin \theta=-3$

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
(4) $y^{2}=9 x$

Solution:
(1) $x=7 \Rightarrow r \cos \theta=7 \Rightarrow r=7 \cdot \frac{1}{\cos \theta} \Rightarrow r=7 \sec \theta$.

$$
\text { Remember } x=r \cos \theta
$$

(2) $y=-3 \Rightarrow r \sin \theta=-3 \Rightarrow r=-3 \cdot \frac{1}{\sin \theta}$

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
4) $y^{2}=9 x$

Solution:
(1) $x=7 \Rightarrow r \cos \theta=7 \Rightarrow r=7 \cdot \frac{1}{\cos \theta} \Rightarrow r=7 \sec \theta$.
(2) $y=-3 \Rightarrow r \sin \theta=-3 \Rightarrow r=-3 \cdot \frac{1}{\sin \theta} \Rightarrow r=-3 \csc \theta$.

$$
\begin{aligned}
& \text { Remember } x=r \cos \theta \\
& \qquad \text { Remember } y=r \sin \theta
\end{aligned}
$$

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
(4) $y^{2}=9 x$

Solution:
(1) $x=7 \Rightarrow r \cos \theta=7 \Rightarrow r=7 \cdot \frac{1}{\cos \theta} \Rightarrow r=7 \sec \theta$.
(2) $y=-3 \Rightarrow r \sin \theta=-3 \Rightarrow r=-3 \cdot \frac{1}{\sin \theta} \Rightarrow r=-3 \csc \theta$.

$$
\begin{aligned}
& \text { Remember } x=r \cos \theta \\
& \qquad \text { Remember } y=r \sin \theta
\end{aligned}
$$

(3) $x^{2}+y^{2}=4 \Rightarrow r^{2}=4 \quad$ Remember $x^{2}+y^{2}=r^{2}$

Polar Equations

\square In Cartesian coordinates (x, y), the equations are either of the form $y=f(x)$ or $x=f(y)$.
\square In polar coordinates (r, θ), the equations take one form, which is $r=f(\theta)$.
Note: a solution of the polar equation is an ordered pair $\left(r_{0}, \theta_{0}\right)$ satisfies the equation i.e., $r_{0}=f\left(\theta_{0}\right)$.
Example The polar points $\left(1, \frac{\pi}{3}\right)$ and $\left(\sqrt{2}, \frac{\pi}{4}\right)$ are solutions of the polar equation $r=2 \cos \theta$:
Put $\theta=\frac{\pi}{3} \Rightarrow r=2 \cos \left(\frac{\pi}{3}\right)=2\left(\frac{1}{2}\right)=1$. This means $\left(1, \frac{\pi}{3}\right)$ is a solution of the polar equation $r=2 \cos \theta$.
Also,
Put $\theta=\frac{\pi}{4} \Rightarrow r=2 \cos \left(\frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$. This means $\left(\sqrt{2}, \frac{\pi}{4}\right)$ is a solution of the polar equation $r=2 \cos \theta$.

Example

Find a polar equation that has the same graph as the equation in x and y.
(1) $x=7$
(3) $x^{2}+y^{2}=4$
$y=-3$
(4) $y^{2}=9 x$

Solution:

$$
\begin{aligned}
& \text { (1) } x=7 \Rightarrow r \cos \theta=7 \Rightarrow r=7 \cdot \frac{1}{\cos \theta} \Rightarrow r=7 \sec \theta \text {. } \\
& \text { (2) } y=-3 \Rightarrow r \sin \theta=-3 \Rightarrow r=-3 \cdot \frac{1}{\sin \theta} \Rightarrow r=-3 \csc \theta \text {. } \\
& \text { Remember } y=r \sin \theta \\
& \text { (3) } x^{2}+y^{2}=4 \Rightarrow r^{2}=4 \quad \text { Remember } x^{2}+y^{2}=r^{2} \\
& \text { (4) } y^{2}=9 x \Rightarrow r^{2} \sin ^{2} \theta=9 r \cos \theta \\
& \Rightarrow r \sin ^{2} \theta=9 \cos \theta \\
& \Rightarrow r=9 \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta} \Rightarrow r=9 \cot \theta \csc \theta \text {. }
\end{aligned}
$$

Polar Equations \& Tangent Line to Polar Curves

Example

Find an equation in x and y that has the same graph as the polar equation.
(1) $r=3 \quad \begin{aligned} & r=\sin \theta\end{aligned}$
(3) $r=6 \cos \theta$
$r=\sec \theta$

Polar Equations \& Tangent Line to Polar Curves

Example

Find an equation in x and y that has the same graph as the polar equation.
(1) $r=3$
(3) $r=6 \cos \theta$
$r=\sin \theta$
$r=\sec \theta$

Solution:
(1) $r=3 \Rightarrow r^{2}=9 \Rightarrow x^{2}+y^{2}=9$

Polar Equations \& Tangent Line to Polar Curves

Example

Find an equation in x and y that has the same graph as the polar equation.
(1) $\begin{aligned} & r=3 \\ & r=\sin \theta\end{aligned}$
(3) $r=6 \cos \theta$
$r=\sec \theta$

Solution:
(1) $r=3 \Rightarrow r^{2}=9 \Rightarrow x^{2}+y^{2}=9$
(2) $r=\sin \theta \Rightarrow r^{2}=r \sin \theta \Rightarrow r^{2}=y \Rightarrow x^{2}+y^{2}=y \Rightarrow x^{2}+y^{2}-y=0$.

Polar Equations \& Tangent Line to Polar Curves

Example

Find an equation in x and y that has the same graph as the polar equation.
(1) $r=3$
(3) $r=6 \cos \theta$
$r=\sin \theta$
$r=\sec \theta$

Solution:
(1) $r=3 \Rightarrow r^{2}=9 \Rightarrow x^{2}+y^{2}=9$
(2) $r=\sin \theta \Rightarrow r^{2}=r \sin \theta \Rightarrow r^{2}=y \Rightarrow x^{2}+y^{2}=y \Rightarrow x^{2}+y^{2}-y=0$.
(3) $r=6 \cos \theta \Rightarrow r^{2}=6 r \cos \theta \Rightarrow r^{2}=6 x \Rightarrow x^{2}+y^{2}-6 x=0$.

Polar Equations \& Tangent Line to Polar Curves

Example

Find an equation in x and y that has the same graph as the polar equation.
(1) $r=3$
(3) $r=6 \cos \theta$
$r=\sin \theta$
$r=\sec \theta$

Solution:
(1) $r=3 \Rightarrow r^{2}=9 \Rightarrow x^{2}+y^{2}=9$
(2) $r=\sin \theta \Rightarrow r^{2}=r \sin \theta \Rightarrow r^{2}=y \Rightarrow x^{2}+y^{2}=y \Rightarrow x^{2}+y^{2}-y=0$.
(3) $r=6 \cos \theta \Rightarrow r^{2}=6 r \cos \theta \Rightarrow r^{2}=6 x \Rightarrow x^{2}+y^{2}-6 x=0$.
(4) $r=\sec \theta \Rightarrow r=\frac{1}{\cos \theta} \Rightarrow r \cos \theta=1 \Rightarrow x=1$.

Polar Equations \& Tangent Line to Polar Curves

Example

Find an equation in x and y that has the same graph as the polar equation.
(1) $r=3 \quad \begin{aligned} & r=\sin \theta\end{aligned}$
(3) $r=6 \cos \theta$

Solution:
(1) $r=3 \Rightarrow r^{2}=9 \Rightarrow x^{2}+y^{2}=9$
(2) $r=\sin \theta \Rightarrow r^{2}=r \sin \theta \Rightarrow r^{2}=y \Rightarrow x^{2}+y^{2}=y \Rightarrow x^{2}+y^{2}-y=0$.
(3) $r=6 \cos \theta \Rightarrow r^{2}=6 r \cos \theta \Rightarrow r^{2}=6 x \Rightarrow x^{2}+y^{2}-6 x=0$.
(4) $r=\sec \theta \Rightarrow r=\frac{1}{\cos \theta} \Rightarrow r \cos \theta=1 \Rightarrow x=1$.

- Tangent Line to Polar Curves

Since $r=f(\theta)$ is a polar equation, then $x=r \cos \theta \Rightarrow x=f(\theta) \cos \theta$ and $y=r \sin \theta \Rightarrow y=f(\theta) \sin \theta$. From the chain rule, we have

$$
\begin{gathered}
\frac{d x}{d \theta}=-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta=-r \sin \theta+\frac{d r}{d \theta} \cos \theta \\
\frac{d y}{d \theta}=f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta=r \cos \theta+\frac{d r}{d \theta} \sin \theta
\end{gathered}
$$

If $\frac{d x}{d \theta} \neq 0$, the slope of the tangent line to the graph of $r=f(\theta)$ is

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{r \cos \theta+\sin \theta(d r / d \theta)}{-r \sin \theta+\cos \theta(d r / d \theta)}
$$

Tangent Line to Polar Curves

Theorem

Let $r=f(\theta)$ be a polar equation where f^{\prime} is continuous. The slope of the tangent line to the graph of $r=f(\theta)$ is

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{r \cos \theta+\sin \theta(d r / d \theta)}{-r \sin \theta+\cos \theta(d r / d \theta)} .
$$

Remark

If $\frac{d y}{d \theta}=0$ such that $\frac{d x}{d \theta} \neq 0$, the curve has a horizontal tangent line.
If $\frac{d x}{d \theta}=0$ such that $\frac{d y}{d \theta} \neq 0$, the curve has a vertical tangent line.

- If $\frac{d x}{d \theta} \neq 0$ at $\theta=\theta_{0}$, the slope of the tangent line to the graph of $r=f(\theta)$ is

$$
\frac{r_{0} \cos \theta_{0}+\sin \theta_{0}(d r / d \theta)_{\theta=\theta_{0}}}{-r_{0} \sin \theta_{0}+\cos \theta_{0}(d r / d \theta)_{\theta=\theta_{0}}} \text {, where } r_{0}=f\left(\theta_{0}\right)
$$

Example

Find the slope of the tangent line to graph of $r=\sin \theta$ at $\theta=\frac{\pi}{4}$.

Tangent Line to Polar Curves

Theorem

Let $r=f(\theta)$ be a polar equation where f^{\prime} is continuous. The slope of the tangent line to the graph of $r=f(\theta)$ is

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{r \cos \theta+\sin \theta(d r / d \theta)}{-r \sin \theta+\cos \theta(d r / d \theta)}
$$

Remark

If $\frac{d y}{d \theta}=0$ such that $\frac{d x}{d \theta} \neq 0$, the curve has a horizontal tangent line.
If $\frac{d x}{d \theta}=0$ such that $\frac{d y}{d \theta} \neq 0$, the curve has a vertical tangent line.
\square If $\frac{d x}{d \theta} \neq 0$ at $\theta=\theta_{0}$, the slope of the tangent line to the graph of $r=f(\theta)$ is

$$
\frac{r_{0} \cos \theta_{0}+\sin \theta_{0}(d r / d \theta)_{\theta=\theta_{0}}}{-r_{0} \sin \theta_{0}+\cos \theta_{0}(d r / d \theta)_{\theta=\theta_{0}}}, \text { where } r_{0}=f\left(\theta_{0}\right)
$$

Example

Find the slope of the tangent line to graph of $r=\sin \theta$ at $\theta=\frac{\pi}{4}$.
Solution: $x=r \cos \theta \Rightarrow x=\sin \theta \cos \theta \Rightarrow \frac{d x}{d \theta}=\cos ^{2} \theta-\sin ^{2} \theta$, and
$y=r \sin \theta \Rightarrow y=\sin ^{2} \theta \Rightarrow \frac{d y}{d \theta}=2 \sin \theta \cos \theta$.
From the theorem, we have $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$.
At $\theta=\frac{\pi}{\Lambda}$, we have $\frac{d y}{d \theta}=1$ and $\frac{d x}{d \theta}=0$. Thus, the slope is undefined and in this case, the curve has a vertical tangent line. $Q \curvearrowright$

Graphs in Polar Coordinates

Symmetry in Polar Coordinates

Theorem

(1) Symmetry about the polar axis.

The graph of $r=f(\theta)$ is symmetric with respect to the polar axis if replacing (r, θ) with $(r,-\theta)$ or with $(-r, \pi-\theta)$ does not change the equation.
(2) Symmetry about the vertical line $\theta=\frac{\pi}{2}$.

The graph of $r=f(\theta)$ is symmetric with respect to the vertical line if replacing (r, θ) with $(r, \pi-\theta)$ or with $(-r,-\theta)$ does not change the equation.
(3) Symmetry about the pole $\theta=0$.

The graph of $r=f(\theta)$ is symmetric with respect to the pole if replacing (r, θ) with $(-r, \theta)$ or with $(r, \theta+\pi)$ does not change the equation.

A

Graphs in Polar Coordinates

Some Special Polar Graphs

Lines in polar coordinates

(1) The polar equation of a straight line $a x+b y=c$ is $r=\frac{c}{a \cos \theta+b \sin \theta}$.

Since $x=r \cos \theta$ and $y=r \sin \theta$, then

$$
a x+b y=c \Rightarrow r(a \cos \theta+b \sin \theta)=c \Rightarrow r=\frac{c}{(a \cos \theta+b \sin \theta)}
$$

(2) The polar equation of a vertical line $x=k$ is $r=k \sec \theta$.

$$
\text { Let } x=k \text {, then } r \cos \theta=k \text {. This implies } r=\frac{k}{\cos \theta}=k \sec \theta \text {. }
$$

(3) The polar equation of a horizontal line $y=k$ is $r=k \csc \theta$.

$$
\text { Let } y=k \text {, then } r \sin \theta=k \text {. This implies } r=\frac{k}{\sin \theta}=r \csc \theta \text {. }
$$

4) The polar equation of a line that passes the origin point and makes an angle θ_{0} with the positive x-axis is $\theta=\theta_{0}$.

Graphs in Polar Coordinates

Circles in polar coordinates

(1)

The circle equation with center at the pole O and radius $|a|$ is $r=a$.
(2)

The circle equation with center at $(a, 0)$ and radius $|a|$ is

$$
r=2 a \cos \theta
$$

(3)

The circle equation with center at $(0, a)$ and radius $|a|$ is

$$
r=2 a \sin \theta
$$

Graphs in Polar Coordinates

Example

Sketch the graph of $r=4 \sin \theta$.

Solution:

Note that the graph of $r=4 \sin \theta$ is symmetric about the vertical line $\theta=\frac{\pi}{2} \operatorname{since} 4 \sin (\pi-\theta)=4 \sin \theta$.
We restrict our attention to the interval $[0, \pi / 2]$ and by the symmetry, we complete the graph.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
r	0	2	$4 / \sqrt{2}$	$2 \sqrt{3}$	4

Graphs in Polar Coordinates

Cardioid curves

1. $r=a(1 \pm \cos \theta)$

$$
r=a(1+\cos \theta)
$$

2. $r=a(1 \pm \sin \theta)$

Graphs in Polar Coordinates

Limaçons curves

1. $r=a \pm b \cos \theta$
(1)
$r=a+b \cos \theta$

(2) $r=a-b \cos \theta$

Graphs in Polar Coordinates

2. $r=a \pm b \sin \theta$
(1) $r=a+b \sin \theta$

(2) $r=a-b \sin \theta$

Graphs in Polar Coordinates
Roses (Note that if n is odd, there are n petals; however, if n is even, there are $2 n$ petals.)
(1) $r=a \cos (n \theta)$ where $n \in \mathbb{N}$

(2) $r=a \sin (n \theta)$ where $n \in \mathbb{N}$.

Graphs in Polar Coordinates

\square Spiral of Archimedes
$r=a \theta$

Area in Polar Coordinates

Case 1

$$
A=\frac{1}{2} \int_{\alpha}^{\beta}(f(\theta))^{2} d \theta
$$

Case $2 \quad A=\frac{1}{2} \int_{\alpha}^{\beta}\left[(f(\theta))^{2}-(g(\theta))^{2}\right] d \theta$

Case 3

$$
\begin{aligned}
& A_{1}=\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}}(g(\theta))^{2} d \theta \\
& A_{2}=\frac{1}{2} \int_{\theta_{2}}^{\theta_{3}}(f(\theta))^{2} d \theta
\end{aligned}
$$

Total: $A=A_{1}+A_{2}$

Area in Polar Coordinates

Example

Find the area of the region bounded by the graph of the polar equation.
(1) $r=3$
(2) $r=2 \cos \theta$

Area in Polar Coordinates

Example

Find the area of the region bounded by the graph of the polar equation.
(1) $r=3$
(2) $r=2 \cos \theta$

Solution:

(1) The graph of $r=3$ is obtained by letting θ takes values from 0 to 2π. Thus, the area is

$$
A=\frac{1}{2} \int_{0}^{2 \pi} 3^{2} d \theta=\frac{9}{2} \int_{0}^{2 \pi} d \theta=\frac{9}{2}[\theta]_{0}^{2 \pi}=9 \pi
$$

Area in Polar Coordinates

Example

Find the area of the region bounded by the graph of the polar equation.
(1) $r=3$
(2) $r=2 \cos \theta$

Solution:

(1) The graph of $r=3$ is obtained by letting θ takes values from 0 to 2π. Thus, the area is

$$
A=\frac{1}{2} \int_{0}^{2 \pi} 3^{2} d \theta=\frac{9}{2} \int_{0}^{2 \pi} d \theta=\frac{9}{2}[\theta]_{0}^{2 \pi}=9 \pi
$$

Note that one can evaluate the area in the first quadrant and multiply the result by 4 to find the area of the whole region i.e.,

$$
A=4\left(\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 3^{2} d \theta\right)=2 \int_{0}^{\frac{\pi}{2}} 9 d \theta=18[\theta]_{0}^{\frac{\pi}{2}}=9 \pi
$$

Area in Polar Coordinates

(2) We find the area of the upper half circle and multiply the result by 2 as follows:

$$
\begin{aligned}
A & =2\left(\frac{1}{2} \int_{0}^{\frac{\pi}{2}}(2 \cos \theta)^{2} d \theta\right) \\
& =\int_{0}^{\frac{\pi}{2}} 4 \cos ^{2} \theta d \theta \quad: \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \\
& =2 \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta \\
& =2\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}} \\
& =2\left[\frac{\pi}{2}-0\right] \\
& =\pi .
\end{aligned}
$$

Area in Polar Coordinates

Example

Find the area of the region that is outside the graph of $r=3$ and inside the graph of $r=2+2 \cos \theta$.

Area in Polar Coordinates

Example

Find the area of the region that is outside the graph of $r=3$ and inside the graph of $r=2+2 \cos \theta$.
Solution: The intersection point of the two curves in the first quadrant is

$$
2+2 \cos \theta=3 \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}
$$

Area in Polar Coordinates

Example

Find the area of the region that is outside the graph of $r=3$ and inside the graph of $r=2+2 \cos \theta$.
Solution: The intersection point of the two curves in the first quadrant is

$$
2+2 \cos \theta=3 \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}
$$

As shown in the figure, we find the area in the first quadrant and then we double the result to find the area of the whole region.

$$
\begin{aligned}
A & =2\left(\frac{1}{2} \int_{0}^{\frac{\pi}{3}}\left(4(1+\cos \theta)^{2}-9\right) d \theta\right) \\
& =\int_{0}^{\frac{\pi}{3}}\left(4\left(1+2 \cos \theta+\cos ^{2} \theta\right)-9\right) d \theta \\
& =\int_{0}^{\frac{\pi}{3}}\left(8 \cos \theta+4 \cos ^{2} \theta-5\right) d \theta \\
& =[8 \sin \theta+\sin 2 \theta-3 \theta]_{0}^{\frac{\pi}{3}} \\
& =\frac{9}{2} \sqrt{3}-\pi
\end{aligned}
$$

Area in Polar Coordinates

Example

Find the area of the region that is inside the graphs of the equations $r=\sin \theta$ and $r=\sqrt{3} \cos \theta$.

Area in Polar Coordinates

Example

Find the area of the region that is inside the graphs of the equations $r=\sin \theta$ and $r=\sqrt{3} \cos \theta$.

Solution:

First, we find the intersection points of the two curves

$$
\sin \theta=\sqrt{3} \cos \theta \Rightarrow \tan \theta=\sqrt{3} \Rightarrow \theta=\frac{\pi}{3}
$$

Area in Polar Coordinates

Example

Find the area of the region that is inside the graphs of the equations $r=\sin \theta$ and $r=\sqrt{3} \cos \theta$.
Solution:

First, we find the intersection points of the two curves

$$
\sin \theta=\sqrt{3} \cos \theta \Rightarrow \tan \theta=\sqrt{3} \Rightarrow \theta=\frac{\pi}{3}
$$

The origin O is in each circle, but it cannot be found by solving the equations. Therefore, when looking for the intersection points of the polar graphs, we sometimes take under consideration the graphs.

The region is divided into two small regions: below and above the line $\frac{\pi}{3}$.

Area in Polar Coordinates

Region(1): below the line $\frac{\pi}{3}$.

$$
\begin{aligned}
A_{1}=\frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sin ^{2} \theta d \theta & =\frac{1}{4} \int_{0}^{\frac{\pi}{3}}(1-\cos 2 \theta) d \theta \\
& =\frac{1}{4}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{3}} \\
& =\frac{1}{4}\left[\frac{\pi}{3}-\frac{\sin \frac{2 \pi}{3}}{2}\right] \\
& =\frac{1}{4}\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Area in Polar Coordinates

Region(1): below the line $\frac{\pi}{3}$.

$$
\begin{aligned}
A_{1}=\frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sin ^{2} \theta d \theta & =\frac{1}{4} \int_{0}^{\frac{\pi}{3}}(1-\cos 2 \theta) d \theta \\
& =\frac{1}{4}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{3}} \\
& =\frac{1}{4}\left[\frac{\pi}{3}-\frac{\sin \frac{2 \pi}{3}}{2}\right] \\
& =\frac{1}{4}\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Region(2): above the line $\frac{\pi}{3}$.

$$
\begin{aligned}
A_{2}=\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sqrt{3} \cos \theta)^{2} d \theta & =\frac{3}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta \\
& =\frac{3}{4}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\
& =\frac{3}{4}\left[\left(\frac{\pi}{2}-0\right)-\left(\frac{\pi}{3}+\frac{\sqrt{3}}{4}\right)\right] \\
& =\frac{3}{4}\left[\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Area in Polar Coordinates

Region(1): below the line $\frac{\pi}{3}$.

$$
\begin{aligned}
A_{1}=\frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sin ^{2} \theta d \theta & =\frac{1}{4} \int_{0}^{\frac{\pi}{3}}(1-\cos 2 \theta) d \theta \\
& =\frac{1}{4}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{3}} \\
& =\frac{1}{4}\left[\frac{\pi}{3}-\frac{\sin \frac{2 \pi}{3}}{2}\right] \\
& =\frac{1}{4}\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Region(2): above the line $\frac{\pi}{3}$.

$$
\begin{aligned}
A_{2}=\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sqrt{3} \cos \theta)^{2} d \theta & =\frac{3}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta \\
& =\frac{3}{4}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\
& =\frac{3}{4}\left[\left(\frac{\pi}{2}-0\right)-\left(\frac{\pi}{3}+\frac{\sqrt{3}}{4}\right)\right] \\
& =\frac{3}{4}\left[\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Total area $A=A_{1}+A_{2}=\frac{5 \pi}{24}-\frac{\sqrt{3}}{4}$.

Arc Length and Surface of Revolution in Polar Coordinates

Arc Length in Polar Coordinates

$$
\begin{equation*}
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{9}
\end{equation*}
$$

Arc Length and Surface of Revolution in Polar Coordinates

\square Arc Length in Polar Coordinates

$$
\begin{equation*}
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{9}
\end{equation*}
$$

Example

Find the length of the curve.
(1) $r=2$
(2) $r=2 \sin \theta$

Arc Length and Surface of Revolution in Polar Coordinates

- Arc Length in Polar Coordinates

$$
\begin{equation*}
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{9}
\end{equation*}
$$

Example

Find the length of the curve.
(1) $r=2$
(2) $r=2 \sin \theta$

Solution:
(1) $r^{2}+\left(\frac{d r}{d \theta}\right)^{2}=4$. Hence,

$$
L=\int_{0}^{2 \pi} \sqrt{4} d \theta=2[\theta]_{0}^{2 \pi}=4 \pi
$$

Arc Length and Surface of Revolution in Polar Coordinates

Arc Length in Polar Coordinates

$$
\begin{equation*}
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{9}
\end{equation*}
$$

Example

Find the length of the curve.
(1) $r=2$
(2) $r=2 \sin \theta$

Solution:
(1) $r^{2}+\left(\frac{d r}{d \theta}\right)^{2}=4$. Hence,

$$
L=\int_{0}^{2 \pi} \sqrt{4} d \theta=2[\theta]_{0}^{2 \pi}=4 \pi
$$

(2) $r^{2}+\left(\frac{d r}{d \theta}\right)^{2}=4 \sin ^{2} \theta+4 \cos ^{2} \theta=4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4 . \quad$ Remember: $\cos ^{2} \theta+\sin ^{2} \theta=1$

This implies

$$
L=\int_{0}^{\pi} \sqrt{4} d \theta=2[\theta]_{0}^{\pi}=2 \pi
$$

Arc Length and Surface of Revolution in Polar Coordinates

\square Surface of Revolution in Polar Coordinates

- The surface area generated by revolving the curve $r=f(\theta)$ about the polar axis (x-axis) is

$$
\begin{equation*}
S . A=2 \pi \int_{\alpha}^{\beta}|r \sin \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{10}
\end{equation*}
$$

Arc Length and Surface of Revolution in Polar Coordinates

■ Surface of Revolution in Polar CoordinatesThe surface area generated by revolving the curve $r=f(\theta)$ about the polar axis (x-axis) is

$$
\begin{equation*}
S . A=2 \pi \int_{\alpha}^{\beta}|r \sin \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{10}
\end{equation*}
$$

\square The surface area generated by revolving the curve $r=f(\theta)$ about the line $\theta=\frac{\pi}{2}$ (y-axis) is

$$
\begin{equation*}
S . A=2 \pi \int_{\alpha}^{\beta}|r \cos \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{11}
\end{equation*}
$$

Arc Length and Surface of Revolution in Polar Coordinates

■ Surface of Revolution in Polar CoordinatesThe surface area generated by revolving the curve $r=f(\theta)$ about the polar axis (x-axis) is

$$
\begin{equation*}
S \cdot A=2 \pi \int_{\alpha}^{\beta}|r \sin \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{10}
\end{equation*}
$$

The surface area generated by revolving the curve $r=f(\theta)$ about the line $\theta=\frac{\pi}{2}$ (y-axis) is

$$
\begin{equation*}
S . A=2 \pi \int_{\alpha}^{\beta}|r \cos \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{11}
\end{equation*}
$$

Example

Find the area of the surface generated by revolving the curve $r=2 \sin \theta$ about the polar axis.

Arc Length and Surface of Revolution in Polar Coordinates

Surface of Revolution in Polar Coordinates

The surface area generated by revolving the curve $r=f(\theta)$ about the polar axis (x-axis) is$$
\begin{equation*}
S . A=2 \pi \int_{\alpha}^{\beta}|r \sin \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{10}
\end{equation*}
$$

The surface area generated by revolving the curve $r=f(\theta)$ about the line $\theta=\frac{\pi}{2}$ (y-axis) is

$$
\begin{equation*}
S . A=2 \pi \int_{\alpha}^{\beta}|r \cos \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{11}
\end{equation*}
$$

Example

Find the area of the surface generated by revolving the curve $r=2 \sin \theta$ about the polar axis.
Solution: We apply the formula $S . A=2 \pi \int_{\alpha}^{\beta}|r \sin \theta| \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$.

$$
r^{2}+\left(\frac{d r}{d \theta}\right)^{2}=4 \sin ^{2} \theta+4 \cos ^{2} \theta=4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4
$$

$\Rightarrow S \cdot A=2 \pi \int_{0}^{\pi}|(2 \sin \theta) \sin \theta| \sqrt{4} d \theta=8 \pi \int_{0}^{\pi} \sin ^{2} \theta d \theta=4 \pi \int_{0}^{\pi}(1-\cos 2 \theta) d \theta=4 \pi\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi}=4 \pi^{2}$.

