Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 26, 2024

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

(1)

Review
(2) Areas

- Region Bounded by a Curve and x-axis
- Region Bounded by a Curve and y-axis

■ Region Bounded by Two Curves
(3) Solids of Revolution

- Volumes of Revolution Solids (Disk Method)
- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells

4 Arc Length and Surfaces of Revolution

Volumes of Revolution Solids (Cylindrical Shells Method)

We study a new method to evaluate the volume of revolution solid called cylindrical shells method .
\square In the washer method, we assume that the rectangle from each subinterval is perpendicular to the revolution axis.
■ In the cylindrical shells method, the rectangle will be parallel to the revolution axis.

The figure shows a cylindrical shell. Let
$\square r_{1}$ be the inner radius of the shell,
$\square r_{2}$ be the outer radius of the shell,
$\square h$ be high of the shell,
$\square \Delta r=r_{2}-r_{1}$ be the thickness of the shell,
$\square r=\frac{r_{1}+r_{2}}{2}$ be the average radius of the shell.

The volume of the cylindrical shell: $V=V_{2}-V_{1}=\pi r_{2}^{2} h-\pi r_{1}^{2} h$

$$
\begin{aligned}
& =\pi\left(r_{2}^{2}-r_{1}^{2}\right) h \\
& =\pi\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) h \\
& =2 \pi\left(\frac{r_{2}+r_{1}}{2}\right) h\left(r_{2}-r_{1}\right) \\
& =2 \pi r h \Delta r
\end{aligned}
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Let R is a region bounded by the graph of $y=f(x)$ and x-axis on the interval $[a, b]$.
\square Let S be a solid generated by revolving the region about y-axis.
\square Let P be a partition of the interval $[a, b]$ and let $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ be a mark on P where ω_{k} is the midpoint of $\left[x_{k-1}, x_{k}\right]$.
\square The revolution of the rectangle about the y-axis generates a cylindrical shell wherethe high $=f\left(\omega_{k}\right)$,the average radius $=\omega_{k}$,the thickness $=\Delta x_{k}$.
\square The volume of the cylindrical shell is

$$
V_{k}=2 \pi \omega_{k} f\left(\omega_{k}\right) \Delta x_{k}
$$

To evaluate the volume of the whole solid, we sum the volumes of all cylindrical shells. This implies
$V=\sum_{k=1}^{n} V_{k}=2 \pi \sum_{k=1}^{n} \omega_{k} f\left(\omega_{k}\right) \Delta x_{k}$.

From the Riemann sum

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \omega_{k} f\left(\omega_{k}\right) \Delta x_{k}=\int_{a}^{b} x f(x) d x
$$

This implies

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Similarly, we can find that if the revolution of the region is about x-axis.
\square Let R is a region bounded by the graph of $x=f(y)$ and y-axis on the interval $[c, d]$.
\square Let S be a solid generated by revolving the region about x-axis.
\square Let P be a partition of the interval $[c, d]$ and let $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ be a mark on P where ω_{k} is the midpoint of $\left[y_{k-1}, y_{k}\right]$.
\square The revolution of the rectangle about the x-axis generates a cylindrical shell where
\square the high $=f\left(\omega_{k}\right)$,
■ the average radius $=\omega_{k}$,
\square the thickness $=\Delta y_{k}$.
■ The volume of the cylindrical shell is

$$
V_{k}=2 \pi \omega_{k} f\left(\omega_{k}\right) \Delta y_{k}
$$

To evaluate the volume of the whole solid, we sum the volumes of all cylindrical shells. This implies
$V=\sum_{k=1}^{n} V_{k}=2 \pi \sum_{k=1}^{n} \omega_{k} f\left(\omega_{k}\right) \Delta y_{k}$.

From the Riemann sum $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \omega_{k} f\left(\omega_{k}\right) \Delta y_{k}=\int_{c}^{d} y f(y) d y$.
This implies

$$
V=2 \pi \int_{\text {MATH }}^{d} y f(y) d y
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Theorem.
(1) If R is a region bounded by the graph of $y=f(x)$ and x-axis on the interval $[a, b]$, the volume of the revolution solid generated by revolving R about y-axis is

1. The two points (area boundaries) on the x-axis.
2. Rotation about the y-axis.
3. The rectangle is parallel to the axis of rotation (y-axis).

$$
V=2 \pi \int_{a}^{b} x f(x) d x
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

(2) If R is a region bounded by the graph of $x=f(y)$ and y-axis on the interval $[c, d]$, the volume of the revolution solid generated by revolving R about x-axis is

1. The two points (area boundaries) on the y-axis.
2. Rotation about the x-axis.
3. The rectangle is paralleI to the axis of rotation (x-axis).

$$
V=2 \pi \int_{c}^{d} y f(y) d y
$$

Note. The importance of the cylindrical shells method appears when solving equations for one variable in terms of another (ie., solving x in terms of y). For example, let S be a solid generated by revolving the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$ about y-axis. By the washer method, we have to solve the cubic equation for x in terms of y, but this is not simple.

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graphs of the equations $x=\sqrt{y}$ and $y=4$, and y-axis. Then, find the volume of the solid generated by revolving R about x-axis.

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graphs of the equations $x=\sqrt{y}$ and $y=4$, and y-axis. Then, find the volume of the solid generated by revolving R about x-axis.

Solution:First, we find the intersection point: $x=\sqrt{y} \Rightarrow y=x^{2}$ and $y=4$, so $x^{2}=4 \Rightarrow x= \pm 2$
We ignore $x=-2$ since $x=\sqrt{y}$. Now the graphs of the two functions intersect in one point $(2,4)$.

Since the revolution is about the x-axis, the rectangle is horizontal and by revolving it, we have a cylindrical shell where \square the high: $x=\sqrt{y}$, \square the average radius: y, \quad the thickness: $d y$.

The volume of the cylindrical shell is $d V=2 \pi y \sqrt{y} d y$.
Thus, the volume of the solid over the interval $[0,4]$ is

$$
V=2 \pi \int_{0}^{4} y \sqrt{y} d y=2 \pi \int_{0}^{4} y^{\frac{3}{2}} d y=\frac{4 \pi}{5}\left[y^{\frac{5}{2}}\right]_{0}^{4}=\frac{4 \pi}{5}[32-0]=\frac{128 \pi}{5}
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graphs of the equations $x=\sqrt{y}$ and $y=4$, and y-axis. Then, find the volume of the solid generated by revolving R about x-axis.

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graphs of the equations $x=\sqrt{y}$ and $y=4$, and y-axis. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: We want to find the volume using washer method.

The figure shows the region R and the solid S generated by revolving R about the x-axis. The vertical rectangles generate a washer:
\square the outer radius: $y_{1}=4$,
\square the inner radius: $y_{2}=x^{2}$ and

- the thickness: $d x$.

The volume of the washer is $d V=\pi\left[(4)^{2}-\left(x^{2}\right)^{2}\right] d x$.
Hence, the volume of the solid over the interval $[0,2]$ is

$$
V=\pi \int_{0}^{2}\left((4)^{2}-\left(x^{2}\right)^{2}\right) d x=\pi \int_{0}^{2}\left(16-x^{4}\right) d x=\pi\left[16 x-\frac{x^{5}}{5}\right]_{0}^{2}=\frac{128}{5} \pi .
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Let R be a region bounded by the graphs of the functions $y=x^{2}$ and $y=2 x$ from $x=0$ to $x=2$. Evaluate the volume of the solid generated by revolving R about y-axis.

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Let R be a region bounded by the graphs of the functions $y=x^{2}$ and $y=2 x$ from $x=0$ to $x=2$. Evaluate the volume of the solid generated by revolving R about y-axis.

Solution: Intersection points: $f(x)=g(x) \Rightarrow x^{2}=2 x \Rightarrow x^{2}-2 x=0 \Rightarrow x(x-2)=0 \Rightarrow x=0$ or $x=2$
By substitution, we have that the two curves intersect in two points $(0,0)$ and $(2,4)$.

Since the revolution is about the y-axis, the rectangles are horizontal and by revolving them, we have a cylindrical shells where \square the high: $y=2 x-x^{2}$,
the average radius: x,
\square the thickness: $d x$.
The volume of the cylindrical shell is $d V=2 \pi x\left(2 x-x^{2}\right) d x$.
Thus, the volume of the solid over the interval $[0,2]$ is

$$
V=2 \pi \int_{0}^{2} x\left(2 x-x^{2}\right) d x=2 \pi \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d y=2 \pi\left[\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}=\frac{8 \pi}{3}
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graph of $y=2 x-x^{2}$ and x-axis. Then, by the cylindrical shells method, find the volume of the solid generated by revolving R about y-axis.

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graph of $y=2 x-x^{2}$ and x-axis. Then, by the cylindrical shells method, find the volume of the solid generated by revolving R about y-axis.

Solution:
Intersection with y-axis:

$$
\Rightarrow x=0 \Rightarrow y=2(0)-0^{2}=0 \Rightarrow(0,0)
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graph of $y=2 x-x^{2}$ and x-axis. Then, by the cylindrical shells method, find the volume of the solid generated by revolving R about y-axis.

Solution:
Intersection with y-axis:

$$
\Rightarrow x=0 \Rightarrow y=2(0)-0^{2}=0 \Rightarrow(0,0)
$$

\square Intersection with x-axis:

$$
\begin{gathered}
\Rightarrow y=0 \Rightarrow 2 x-x^{2}=0 \\
\Rightarrow x(2-x)=0 \Rightarrow x=0 \text { or } x=2 \Rightarrow(0,0) \text { and }(2,0)
\end{gathered}
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graph of $y=2 x-x^{2}$ and x-axis. Then, by the cylindrical shells method, find the volume of the solid generated by revolving R about y-axis.

Solution:
Intersection with y-axis:

$$
\Rightarrow x=0 \Rightarrow y=2(0)-0^{2}=0 \Rightarrow(0,0)
$$

Intersection with x-axis:

$$
\begin{gathered}
\Rightarrow y=0 \Rightarrow 2 x-x^{2}=0 \\
\Rightarrow x(2-x)=0 \Rightarrow x=0 \text { or } x=2 \Rightarrow(0,0) \text { and }(2,0)
\end{gathered}
$$

\square First derivative test.

$$
y^{\prime}=0 \Rightarrow 2-2 x=0 \Rightarrow x=1
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graph of $y=2 x-x^{2}$ and x-axis. Then, by the cylindrical shells method, find the volume of the solid generated by revolving R about y-axis.

Solution:
Intersection with y-axis:

$$
\Rightarrow x=0 \Rightarrow y=2(0)-0^{2}=0 \Rightarrow(0,0)
$$

Intersection with x-axis:

$$
\begin{gathered}
\Rightarrow y=0 \Rightarrow 2 x-x^{2}=0 \\
\Rightarrow x(2-x)=0 \Rightarrow x=0 \text { or } x=2 \Rightarrow(0,0) \text { and }(2,0)
\end{gathered}
$$

\square Second derivative test.

$$
y^{\prime \prime}=0 \Rightarrow y^{\prime \prime}=-2<0
$$

The graph of $f(x)$ is concave downward.
\square First derivative test.

$$
y^{\prime}=0 \Rightarrow 2-2 x=0 \Rightarrow x=1
$$

Volumes of Revolution Solids (Cylindrical Shells Method)

Example

Sketch the region R bounded by the graph of $y=2 x-x^{2}$ and x-axis. Then, by the cylindrical shells method, find the volume of the solid generated by revolving R about y-axis.

Solution:
Intersection with y-axis:
\square Second derivative test.

$$
\Rightarrow x=0 \Rightarrow y=2(0)-0^{2}=0 \Rightarrow(0,0)
$$

Intersection with x-axis:

$$
\begin{gathered}
\Rightarrow y=0 \Rightarrow 2 x-x^{2}=0 \\
\Rightarrow x(2-x)=0 \Rightarrow x=0 \text { or } x=2 \Rightarrow(0,0) \text { and }(2,0)
\end{gathered}
$$

\square First derivative test.

$$
y^{\prime}=0 \Rightarrow 2-2 x=0 \Rightarrow x=1
$$

$$
y^{\prime \prime}=0 \Rightarrow y^{\prime \prime}=-2<0
$$

The graph of $f(x)$ is concave downward.

Volumes of Revolution Solids (Cylindrical Shells Method)

Since the revolution is about the y-axis, the rectangle is vertical and by revolving it, we obtain a cylindrical shell where
\square the high: $y=2 x-x^{2}$,
\square the average radius: x,
\square the thickness: $d x$.
The volume of the cylindrical shell is $d V=2 \pi x\left(2 x-x^{2}\right) d x=2 \pi\left(2 x^{2}-x^{3}\right) d x$.
Thus, the volume of the solid over the interval $[0,2]$ is

$$
V=2 \pi \int_{0}^{2} x\left(2 x-x^{2}\right) d x=2 \pi \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x=2 \pi\left[\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}=2 \pi\left(\frac{16}{3}-\frac{16}{4}\right)=\frac{8 \pi}{3}
$$

The difference between disk method and method of cylindrical shells

Disk Method

Region R bounded by :$\diamond y=f(x) \diamond x$-axis $\diamond[a, b]$ on x-axisRevolution about x-axis
Rectangle vertical on the x-axis
$V=\pi \int_{a}^{b}(f(x))^{2} d x$

Region R bounded by :
$\diamond x=f(y)$
$\diamond y$-axis
$\diamond[c, d]$ on y-axis

Revolution about y-axisRectangle vertical on the y-axis
$V=\pi \int_{c}^{d}(f(y))^{2} d y$

- Cylindrical Shells Method
- Region R bounded by :
$\diamond y=f(x) \diamond x$-axis $\diamond[a, b]$ on x-axisRevolution about y-axisRectangle parallel to the y-axis $V=2 \pi \int_{a}^{b} x f(x) d x$

Region R bounded by
$\diamond x=f(y)$
$\diamond y$-axis
$\diamond[c, d]$ on y-axis

- Revolution about x-axis
- Rectangle parallel to the x-axis
$V=2 \pi \int_{c}^{d} y f(y) d y$

Arc Length and Surfaces of Revolution

Arc Length.
Let $y=f(x)$ be a smooth function on $[a, b]$. The length of the arc of f from $(a, f(a))$ to $(b, f(b))$ is

$$
L(f)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Let $x=g(y)$ be a smooth function on $[c, d]$. The length of the arc of g from $(g(c), c)$ to $(g(d), d)$ is

$$
L(g)=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Arc Length and Surfaces of Revolution

Example

Find the arc length of the given function $y=5-\sqrt{x^{3}}$ from $A(0,5)$ to $B(4,-3)$.

Arc Length and Surfaces of Revolution

Example

Find the arc length of the given function $y=5-\sqrt{x^{3}}$ from $A(0,5)$ to $B(4,-3)$.
Solution: We apply the formula:

$$
L(f)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Arc Length and Surfaces of Revolution

Example

Find the arc length of the given function $y=5-\sqrt{x^{3}}$ from $A(0,5)$ to $B(4,-3)$.
Solution: We apply the formula:

$$
L(f)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

$$
\begin{aligned}
y=f(x)=5-\sqrt{x^{3}} & \Rightarrow f^{\prime}(x)=-\frac{3}{2} x^{\frac{1}{2}} \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=\frac{9}{4} x \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=\frac{4+9 x}{4} \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\frac{\sqrt{4+9 x}}{2}
\end{aligned}
$$

Arc Length and Surfaces of Revolution

Example

Find the arc length of the given function $y=5-\sqrt{x^{3}}$ from $A(0,5)$ to $B(4,-3)$.
Solution: We apply the formula:

$$
L(f)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

$$
\begin{aligned}
y=f(x)=5-\sqrt{x^{3}} & \Rightarrow f^{\prime}(x)=-\frac{3}{2} x^{\frac{1}{2}} \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=\frac{9}{4} x \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=\frac{4+9 x}{4} \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\frac{\sqrt{4+9 x}}{2}
\end{aligned}
$$

The arc length of the function is

$$
\begin{aligned}
L(f)=\frac{1}{2} \int_{0}^{4} \sqrt{4+9 x} d x=\frac{1}{2} \int_{0}^{4}(4+9 x)^{\frac{1}{2}} d x & =\frac{1}{27}\left[(4+9 x)^{\frac{3}{2}}\right]_{0}^{4} \\
& =\frac{1}{27}\left[40^{\frac{3}{2}}-4^{\frac{3}{2}}\right] \\
& =\frac{8}{27}[10 \sqrt{10}-1]
\end{aligned}
$$

Note:

$$
40^{\frac{3}{2}}=(\sqrt{4 \times 10})^{3}=(2 \sqrt{10})^{3}
$$

Arc Length and Surfaces of Revolution

Example

Find the length of the curve $y=$ cosh x over the interval $0 \leq x \leq 2$.

Arc Length and Surfaces of Revolution

Example

Find the length of the curve $y=$ cosh x over the interval $0 \leq x \leq 2$.
Solution: We apply the formula

$$
L(f)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Arc Length and Surfaces of Revolution

Example

Find the length of the curve $y=$ cosh x over the interval $0 \leq x \leq 2$.
Solution: We apply the formula

$$
L(f)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

$$
\begin{aligned}
y=f(x)=\cosh x & \Rightarrow f^{\prime}(x)=\sinh x \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=\sinh ^{2} x \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=1+\sinh ^{2} x=\cosh ^{2} x \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\cosh x .
\end{aligned}
$$

Arc Length and Surfaces of Revolution

Example

Find the length of the curve $y=\cosh x$ over the interval $0 \leq x \leq 2$.
Solution: We apply the formula

$$
L(f)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

$$
\begin{aligned}
y=f(x)=\cosh x & \Rightarrow f^{\prime}(x)=\sinh x \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=\sinh ^{2} x \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=1+\sinh ^{2} x=\cosh ^{2} x \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\cosh x .
\end{aligned}
$$

The length of the curve is

$$
\begin{aligned}
L(f)=\int_{0}^{2} \cosh x d x & =[\sinh x]_{0}^{2} \\
& =\sinh 2-\sinh 0 \\
& =\sinh 2
\end{aligned}
$$

Note:

$$
\left(\sinh 0=\frac{e^{0}-e^{-0}}{2}=\frac{1-1}{2}=0\right)
$$

Arc Length and Surfaces of Revolution

Surfaces of Revolution.

Definition

Let f be a continuous function on $[a, b]$. The surface of revolution is generated by revolving the graph of the function f about an axis.

B

Arc Length and Surfaces of Revolution

Theorem

(1) Let $y=f(x)$ be a smooth function on $[a, b]$.

- If the revolution is about x-axis, the area of the revolution surface is

$$
S . A=2 \pi \int_{a}^{b}|y| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

- If the revolution is about y-axis, the area of the revolution surface is

$$
\text { S. } A=2 \pi \int_{a}^{b}|x| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x .
$$

(2) Let $x=g(y)$ be a smooth function on $[c, d]$.

- If the revolution is about y-axis, the area of the revolution surface is

$$
S . A=2 \pi \int_{c}^{d}|x| \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y .
$$

- If the revolution is about x-axis, the area of the revolution surface is

$$
S . A=2 \pi \int_{c}^{d}|y| \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y .
$$

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $\sqrt{4-x^{2}},-2 \leq x \leq 2$ about x-axis.

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $\sqrt{4-x^{2}},-2 \leq x \leq 2$ about x-axis.
Solution:
We apply the formula S. $A=2 \pi \int_{a}^{b}|y| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $\sqrt{4-x^{2}},-2 \leq x \leq 2$ about x-axis.
Solution:
We apply the formula S. $A=2 \pi \int_{a}^{b}|y| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

$$
\begin{aligned}
y=\sqrt{4-x^{2}} & \Rightarrow f^{\prime}(x)=\frac{-2 x}{2 \sqrt{4-x^{2}}} \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=\frac{x^{2}}{4-x^{2}} \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=\frac{4}{4-x^{2}} \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\frac{2}{\sqrt{4-x^{2}}}
\end{aligned}
$$

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $\sqrt{4-x^{2}},-2 \leq x \leq 2$ about x-axis.
Solution:
We apply the formula S. $A=2 \pi \int_{a}^{b}|y| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

$$
\begin{aligned}
y=\sqrt{4-x^{2}} & \Rightarrow f^{\prime}(x)=\frac{-2 x}{2 \sqrt{4-x^{2}}} \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=\frac{x^{2}}{4-x^{2}} \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=\frac{4}{4-x^{2}} \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\frac{2}{\sqrt{4-x^{2}}}
\end{aligned}
$$

The area of the revolution surface is

$$
\begin{aligned}
S . A & =2 \pi \int_{-2}^{2} \sqrt{4-x^{2}} \frac{2}{\sqrt{4-x^{2}}} d x \\
& =2 \pi \int_{-2}^{2} 2 d x \\
& =4 \pi[2+2]=16 \pi
\end{aligned}
$$

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $y=2 x, 0 \leq x \leq 3$ about y-axis.

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $y=2 x, 0 \leq x \leq 3$ about y-axis.
Solution:
We apply the formula $S . A=2 \pi \int_{a}^{b}|x| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $y=2 x, 0 \leq x \leq 3$ about y-axis.
Solution:
We apply the formula $S . A=2 \pi \int_{a}^{b}|x| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

$$
\begin{aligned}
y=2 x & \Rightarrow f^{\prime}(x)=2 \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=4 \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=5 \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{5} .
\end{aligned}
$$

Arc Length and Surfaces of Revolution

Example

Find the surface area generated by revolving the graph of the function $y=2 x, 0 \leq x \leq 3$ about y-axis.
Solution:
We apply the formula $S . A=2 \pi \int_{a}^{b}|x| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

$$
\begin{aligned}
y=2 x & \Rightarrow f^{\prime}(x)=2 \\
& \Rightarrow\left(f^{\prime}(x)\right)^{2}=4 \\
& \Rightarrow 1+\left(f^{\prime}(x)\right)^{2}=5 \\
& \Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{5} .
\end{aligned}
$$

The area of the revolution surface is

$$
\begin{aligned}
S . A & =2 \pi \int_{0}^{3}|x| \sqrt{5} d x \\
& =2 \pi \sqrt{5} \int_{0}^{3} x d x \\
& =\sqrt{5} \pi\left[x^{2}\right]_{0}^{3}=9 \sqrt{5} \pi
\end{aligned}
$$

