Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 25, 2024

Prof. Mohamad Alghamdi

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

Areas

Region Bounded by a Curve and x-axis

Region Bounded by a Curve and y-axis

Region Bounded by Two Curves

Solids of Revolution

- Volumes of Revolution Solids (Disk Method)
- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells
- Arc Length and Surfaces of Revolution

Definition

If R is a plane region, the solid of revolution S is a solid generated from revolving R about a line in the same plane where the line is called the axis of revolution.

Example: Let $y = f(x) \ge 0$ be a continuous function for every $x \in [a, b]$. Let *R* be a region bounded by the graph of *f* and the *x*-axis from x = a to x = b. The region revolution about *x*-axis generates a solid given in Figure 3 (right).

Example: Let y = f(x) be a constant function from x = a to x = b, as in Figure 4. The region R is a rectangle and by revolving it about x-axis, we obtain a circular cylinder.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Consider a region R bounded by the graph of x = f(y) from y = c to y = d. Revolution of R about y-axis generates a solid given in the figure.

< □ > < 同 > < 回 > < 回 > < 回 >

(1) Disk Method

- Let f be continuous on [a, b] and let R be a region bounded by the graph of f and x-axis form x = a to x = b.
- Let S be a solid generated by revolving R about x-axis.
- Assume that P is a partition of [a, b] and ω = (ω₁, ω₂, ..., ω_n) is a mark where ω_k ∈ [x_{k-1}, x_k].
- From each subinterval $[x_{k-1}, x_k]$, we form a vertical rectangle, its high and width are $f(\omega_k)$ and Δx_k , respectively.

The revolution of the vertical rectangle about *x*-axis generates a circular disk as shown in the figure.

The volume of the circular disk with radius r and high h is

$$V = \pi r^2 h$$
.

From the figure, the volume of each circular disk is

$$V_k = \pi (f(\omega_k))^2 \Delta x_k, \quad k = 1, 2, ..., n$$

The sum of the volumes of the circular disks approximates the volume of the revolution solid:

$$V = \sum_{k=1}^{n} V_k = \lim_{\|P\| \to 0} \sum_{k=1}^{n} \pi \left(f(\omega_k) \right)^2 \Delta x_k = \pi \int_a^b \left[f(x) \right]^2 dx.$$

Prof. Mohamad Alghamdi

A D > A A > A > A

Similarly, we can find the volume of the revolution generated by revolving a region about y-axis. Let f be continuous on [c, d] and let R be a region bounded by the graph of f and y-axis from y = c to y = d.

From the figure, the volume of each circular disk is

$$V_k = \pi(f(\omega_k))^2 \Delta y_k, \ k = 1, 2, ..., n$$
.

The sum of the volumes of the circular disks approximates the volume of the revolution solid:

$$V = \sum_{k=1}^{n} V_k = \lim_{\|P\| \to 0} \sum_{k=1}^{n} \pi(f(\omega_k))^2 \Delta y_k$$
$$= \pi \int_c^d \left[f(y) \right]^2 dy.$$

- 4 ∃ ▶

Theorem:

(1) If R is a region bounded by the graph of f on the interval [a, b], the volume of the revolution solid generated by revolving R about x-axis is

$$V = \pi \int_a^b \left[f(x) \right]^2 \, dx.$$

دود المنطقة على محور س
الدوران حول محور س
المستطيل عمودي على محور الدوران (محور س)

< □ > < 同 > < 回 > < 回 > < 回 >

(2) If R is a region bounded by the graph of f on the interval [c, d], the volume of the revolution solid generated by revolving R about y-axis is

1. The two points (area boundaries) on the y-axis.

2. Rotation about the y-axis.

3. The rectangle is perpendicular to the axis of rotation (y-axis).

دود المنطقة على محور ص
الدوران حول محور ص
المستطيل عمودي على محور الدوران (محور ص)

< □ > < 同 > < 回 > < 回 > < 回 >

$$V = \pi \int_c^d \left[f(y) \right]^2 \, dy.$$

э

Example

Sketch the region R bounded by the graph of $y = \sqrt{x}$ from x = 0 to x = 4. Then, find the volume of the solid generated by revolving R about x-axis.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Example

Sketch the region R bounded by the graph of $y = \sqrt{x}$ from x = 0 to x = 4. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure shows the region R and the solid S generated by revolving the region about x-axis.

Example

Sketch the region R bounded by the graph of $y = \sqrt{x}$ from x = 0 to x = 4. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure shows the region R and the solid S generated by revolving the region about x-axis.

Since the revolution is about x-axis, we have a vertical disk with radius $y = \sqrt{x}$ and thickness dx. Thus, the volume of the solid S is

$$V = \pi \int_0^4 (\sqrt{x})^2 \, dx = \pi \int_0^4 x \, dx = \frac{\pi}{2} \left[x^2 \right]_0^4 = \frac{\pi}{2} \left[16 - 0 \right] = 8\pi.$$

.

Example

Sketch the region R bounded by the graph of y = x + 1 on the interval [0, 2]. Then, find the volume of the solid generated by revolving R about x-axis.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Example

Sketch the region R bounded by the graph of y = x + 1 on the interval [0, 2]. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: First, we sketch the graph of the function y = x + 1:

х	0	-1
у	1	0

Example

Sketch the region R bounded by the graph of y = x + 1 on the interval [0, 2]. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: First, we sketch the graph of the function y = x + 1 and determine the region R in the interval [0, 2]. Then, we sketch the solid generated by revolving R about the x-axis.

э

(日) (四) (日) (日) (日)

Example

Sketch the region R bounded by the graph of y = x + 1 on the interval [0, 2]. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: First, we sketch the graph of the function y = x + 1 and determine the region R in the interval [0, 2]. Then, we sketch the solid generated by revolving R about the x-axis.

From the figure, we have a vertical disk with radius y = x + 1 and thickness dx. Thus, the volume of the solid S is as follows:

$$V = \pi \int_0^2 (x+1)^2 \, dx = \frac{\pi}{3} \left[(x+1)^3 \right]_0^2 = \frac{\pi}{3} (27-1) = \frac{26\pi}{3} \, .$$

Prof. Mohamad Alghamdi

Example

Sketch the region R bounded by the graph of the function $y = x^2$ and x-axis from x = -2 to x = 2. Then, find the volume of the solid generated by revolving R about x-axis.

э

(日) (四) (日) (日) (日)

Example

Sketch the region R bounded by the graph of the function $y = x^2$ and x-axis from x = -2 to x = 2. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure on the left shows the region R bounded by the graph of $y = x^2$ in the interval [-2, 2]. The figure to the right shows the solid S generated by revolving the region about the x-axis.

• • = • • = •

Image: Image:

Example

Sketch the region R bounded by the graph of the function $y = x^2$ and x-axis from x = -2 to x = 2. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure on the left shows the region R bounded by the graph of $y = x^2$ in the interval [-2, 2]. The figure to the right shows the solid S generated by revolving the region about the x-axis.

From the figure, we have a vertical disk with radius $y = x^2$ and thickness dx. Thus, the volume of the solid S is as follows:

$$V = \pi \int_{-2}^{2} (x^2)^2 dx = \pi \int_{-2}^{2} x^4 dx = \frac{\pi}{5} \left[x^5 \right]_{-2}^{2} = \frac{64\pi}{5}.$$

Prof. Mohamad Alghamdi

Example

Sketch the region R bounded by the graph of the equation $x = y^2$ on the interval [0, 2]. Then, find the volume of the solid generated by revolving R about y-axis.

Image: Image:

Example

Sketch the region R bounded by the graph of the equation $x = y^2$ on the interval [0, 2]. Then, find the volume of the solid generated by revolving R about y-axis.

Solution: The figure on the left shows the region R bounded by the graph of $x = y^2$ in the interval [0, 2]. The figure to the right shows the solid S generated by revolving the region about the y-axis.

Example

Sketch the region R bounded by the graph of the equation $x = y^2$ on the interval [0, 2]. Then, find the volume of the solid generated by revolving R about y-axis.

Solution: The figure on the left shows the region R bounded by the graph of $x = y^2$ in the interval [0, 2]. The figure to the right shows the solid S generated by revolving the region about the y-axis.

Since the revolution of *R* is about the *y*-axis, we have a horizontal disk with radius $x = y^2$ and thickness *dy*. Thus, the volume of the solid *S* is as follows:

$$V = \pi \int_0^2 (y^2)^2 \, dy = \frac{\pi}{5} \left[y^5 \right]_0^2 = \frac{32\pi}{5}.$$

Prof. Mohamad Alghamdi

April 25, 2024 15 / 14

- E > - E >