Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 25, 2024

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

(1)

Review
(2) Areas

- Region Bounded by a Curve and x-axis
\square Region Bounded by a Curve and y-axis
\square Region Bounded by Two CurvesSolids of Revolution

V Volumes of Revolution Solids (Disk Method)

- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells

4 Arc Length and Surfaces of Revolution

Solids of Revolution

Definition

If R is a plane region, the solid of revolution S is a solid generated from revolving R about a line in the same plane where the line is called the axis of revolution.

Example: Let $y=f(x) \geq 0$ be a continuous function for every $x \in[a, b]$. Let R be a region bounded by the graph of f and the x-axis from $x=a$ to $\bar{x}=b$. The region revolution about x-axis generates a solid given in Figure 3 (right).

Solids of Revolution

Example: Let $y=f(x)$ be a constant function from $x=a$ to $x=b$, as in Figure 4. The region R is a rectangle and by revolving it about x-axis, we obtain a circular cylinder.

Solids of Revolution

Example: Consider a region R bounded by the graph of $x=f(y)$ from $y=c$ to $y=d$. Revolution of R about y-axis generates a solid given in the figure.

Volumes of Revolution Solids (Disk Method)

(1) Disk Method

- Let f be continuous on $[a, b]$ and let R be a region bounded by the graph of f and x-axis form $x=a$ to $x=b$.
- Let S be a solid generated by revolving R about x-axis.
- Assume that P is a partition of $[a, b]$ and $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$ is a mark where $\omega_{k} \in\left[x_{k-1}, x_{k}\right]$.
- From each subinterval $\left[x_{k-1}, x_{k}\right]$, we form a vertical rectangle, its high and width are $f\left(\omega_{k}\right)$ and Δx_{k}, respectively.

The revolution of the vertical rectangle about x-axis generates a circular disk as shown in the figure.

The volume of the circular disk with radius r and high h is

$$
V=\pi r^{2} h
$$

Volumes of Revolution Solids (Disk Method)

From the figure, the volume of each circular disk is

$$
V_{k}=\pi\left(f\left(\omega_{k}\right)\right)^{2} \Delta x_{k}, \quad k=1,2, \ldots, n
$$

The sum of the volumes of the circular disks approximates the volume of the revolution solid:

$$
V=\sum_{k=1}^{n} V_{k}=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \pi\left(f\left(\omega_{k}\right)\right)^{2} \Delta x_{k}=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Volumes of Revolution Solids (Disk Method)

Similarly, we can find the volume of the revolution generated by revolving a region about y-axis. Let f be continuous on [c, d] and let R be a region bounded by the graph of f and y-axis from $y=c$ to $y=d$.

From the figure, the volume of each circular disk is

$$
V_{k}=\pi\left(f\left(\omega_{k}\right)\right)^{2} \Delta y_{k}, \quad k=1,2, \ldots, n .
$$

The sum of the volumes of the circular disks approximates the volume of the revolution solid:

$$
\begin{aligned}
V=\sum_{k=1}^{n} V_{k} & =\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \pi\left(f\left(\omega_{k}\right)\right)^{2} \Delta y_{k} \\
& =\pi \int_{c}^{d}[f(y)]^{2} d y .
\end{aligned}
$$

Volumes of Revolution Solids (Disk Method)

Theorem:
(1) If R is a region bounded by the graph of f on the interval $[a, b]$, the volume of the revolution solid generated by revolving R about x-axis is

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Volumes of Revolution Solids (Disk Method)

(2) If R is a region bounded by the graph of f on the interval $[c, d]$, the volume of the revolution solid generated by revolving R about y-axis is

$$
V=\pi \int_{c}^{d}[f(y)]^{2} d y
$$

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of $y=\sqrt{x}$ from $x=0$ to $x=4$. Then, find the volume of the solid generated by revolving R about x-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of $y=\sqrt{x}$ from $x=0$ to $x=4$. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure shows the region R and the solid S generated by revolving the region about x-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of $y=\sqrt{x}$ from $x=0$ to $x=4$. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure shows the region R and the solid S generated by revolving the region about x-axis.

Since the revolution is about x-axis, we have a vertical disk with radius $y=\sqrt{x}$ and thickness $d x$.
Thus, the volume of the solid S is

$$
V=\pi \int_{0}^{4}(\sqrt{x})^{2} d x=\pi \int_{0}^{4} x d x=\frac{\pi}{2}\left[x^{2}\right]_{0}^{4}=\frac{\pi}{2}[16-0]=8 \pi
$$

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of $y=x+1$ on the interval $[0,2]$. Then, find the volume of the solid generated by revolving R about x-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of $y=x+1$ on the interval $[0,2]$. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: First, we sketch the graph of the function $y=x+1$:

x	0	-1
y	1	0

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of $y=x+1$ on the interval $[0,2]$. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: First, we sketch the graph of the function $y=x+1$ and determine the region R in the interval [0,2]. Then, we sketch the solid generated by revolving R about the x-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of $y=x+1$ on the interval $[0,2]$. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: First, we sketch the graph of the function $y=x+1$ and determine the region R in the interval [0,2]. Then, we sketch the solid generated by revolving R about the x-axis.

From the figure, we have a vertical disk with radius $y=x+1$ and thickness $d x$. Thus, the volume of the solid S is as follows:

$$
V=\pi \int_{0}^{2}(x+1)^{2} d x=\frac{\pi}{3}\left[(x+1)^{3}\right]_{0}^{2}=\frac{\pi}{3}(27-1)=\frac{26 \pi}{3}
$$

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of the function $y=x^{2}$ and x-axis from $x=-2$ to $x=2$. Then, find the volume of the solid generated by revolving R about x-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of the function $y=x^{2}$ and x-axis from $x=-2$ to $x=2$. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure on the left shows the region R bounded by the graph of $y=x^{2}$ in the interval $[-2,2]$. The figure to the right shows the solid S generated by revolving the region about the x-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of the function $y=x^{2}$ and x-axis from $x=-2$ to $x=2$. Then, find the volume of the solid generated by revolving R about x-axis.

Solution: The figure on the left shows the region R bounded by the graph of $y=x^{2}$ in the interval $[-2,2]$. The figure to the right shows the solid S generated by revolving the region about the x-axis.

From the figure, we have a vertical disk with radius $y=x^{2}$ and thickness $d x$. Thus, the volume of the solid S is as follows:

$$
V=\pi \int_{-2}^{2}\left(x^{2}\right)^{2} d x=\pi \int_{-2}^{2} x^{4} d x=\frac{\pi}{5}\left[x^{5}\right]_{-2}^{2}=\frac{64 \pi}{5}
$$

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of the equation $x=y^{2}$ on the interval $[0,2]$. Then, find the volume of the solid generated by revolving R about y-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of the equation $x=y^{2}$ on the interval $[0,2]$. Then, find the volume of the solid generated by revolving R about y-axis.

Solution: The figure on the left shows the region R bounded by the graph of $x=y^{2}$ in the interval $[0,2]$. The figure to the right shows the solid S generated by revolving the region about the y-axis.

Volumes of Revolution Solids (Disk Method)

Example

Sketch the region R bounded by the graph of the equation $x=y^{2}$ on the interval $[0,2]$. Then, find the volume of the solid generated by revolving R about y-axis.

Solution: The figure on the left shows the region R bounded by the graph of $x=y^{2}$ in the interval $[0,2]$. The figure to the right shows the solid S generated by revolving the region about the y-axis.

Since the revolution of R is about the y-axis, we have a horizontal disk with radius $x=y^{2}$ and thickness $d y$. Thus, the volume of the solid S is as follows:

$$
V=\pi \int_{0}^{2}\left(y^{2}\right)^{2} d y=\frac{\pi}{5}\left[y^{5}\right]_{0}^{2}=\frac{32 \pi}{5} .
$$

