Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 15, 2024

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

Areas

Region Bounded by a Curve and x-axis

Region Bounded by a Curve and y-axis

Region Bounded by Two Curves

3 Solids of Revolution

- Volumes of Revolution Solids (Disk Method)
- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells
- Arc Length and Surfaces of Revolution

Sketch the region bounded by the graphs of $y = x^2$ and y = x + 6 over the interval [-2, 3], then find its area.

A D N A B N A B N A B N

Example

Sketch the region bounded by the graphs of $y = x^2$ and y = x + 6 over the interval [-2, 3], then find its area.

Solution: The intersection points:

$$x^2 = x + 6 \Rightarrow x^2 - x - 6 = 0$$

$$\Rightarrow (x+2)(x-3) = 0 \Rightarrow x = -2 \text{ and } x = 3$$
$$x = -2 \Rightarrow y = 4 \Rightarrow (-2, 4)$$
$$x = 3 \Rightarrow y = 9 \Rightarrow (3, 9)$$

イロト 不得 トイヨト イヨト

Example

Sketch the region bounded by the graphs of $y = x^2$ and y = x + 6 over the interval [-2, 3], then find its area.

Solution: The intersection points:

$$x^2 = x + 6 \Rightarrow x^2 - x - 6 = 0$$

$$\Rightarrow (x+2)(x-3) = 0 \Rightarrow x = -2 \text{ and } x = 3$$
$$x = -2 \Rightarrow y = 4 \Rightarrow (-2, 4)$$
$$x = 3 \Rightarrow y = 9 \Rightarrow (3, 9)$$

The area of the region is

$$\begin{aligned} A &= \int_{-2}^{3} (x+6-x^2) \, dx \\ &= \left[\frac{x^2}{2} + 6x - \frac{x^3}{3} \right]_{-2}^{3} \\ &= \left(\frac{3^2}{2} + 6(3) - \frac{3^3}{3} \right) - \left(\frac{(-2)^2}{2} + 6(-2) - \frac{(-2)^3}{3} \right) \\ &= \frac{27}{2} + \frac{22}{3} = \frac{125}{6} . \end{aligned}$$

Sketch the region bounded by the graphs of $y = x^2$ and $x = y^2$ over [0, 1], then find its area.

イロト イヨト イヨト イヨト

Sketch the region bounded by the graphs of $y = x^2$ and $x = y^2$ over [0, 1], then find its area.

Solution: We write the two functions in terms of x, so the upper graph: $x = y^2 \Rightarrow y = \sqrt{x}$.

Sketch the region bounded by the graphs of x = 2y and $x = \frac{y}{2} + 3$ and x - axis, then find its area.

メロト メポト メヨト メヨト

Example

Sketch the region bounded by the graphs of x = 2y and $x = \frac{y}{2} + 3$ and x - axis, then find its area.

Solution: The intersection points:

$$\frac{y}{2} + 3 = 2y$$
$$\Rightarrow y + 6 = 4y$$
$$\Rightarrow y = 2.$$

Substitute y = 2 in both functions to have x = 4. Thus, the two curves intersect at (4, 2).

Example

Sketch the region bounded by the graphs of x = 2y and $x = \frac{y}{2} + 3$ and x - axis, then find its area.

Solution:

The intersection points:

$$\frac{y}{2} + 3 = 2y$$
$$\Rightarrow y + 6 = 4y$$
$$\Rightarrow y = 2.$$

Substitute y = 2 in both functions to have x = 4. Thus, the two curves intersect at (4, 2).

$$A = \int_{0}^{2} \left(\frac{y}{2} + 3 - 2y\right) dy$$
$$= \int_{0}^{2} \left(-\frac{3}{2}y + 3\right) dy$$
$$= \left[-\frac{3}{4}y^{2} + 3y\right]_{0}^{2}$$
$$= -3 + 6 = 3.$$

Sketch the region bounded by the graphs of $y = x^2$, $y = 3x^2$, x = 0 and x = 1, then find its area.

Solution:

The two curves intersect at one point (0, 0).

$$A = \int_0^1 (3x^2 - x^2) \, dx$$

= $\int_0^1 (2x^2) \, dx$
= $\frac{2}{3} \left[x^3 \right]_0^1$
= $\frac{2}{3}$.

< □ > < 同 > < 回 > < 回 > < 回 >

Example

Sketch the region bounded by the graphs of $y = 2x^2 + 1$, $y = 4 - x^2$, x = 0 and x = 1, then find its area.

Solution:

The intersection points:

$$2x^{2} + 1 = 4 - x^{2}$$

$$\Rightarrow 3x^{2} = 3$$

$$\Rightarrow x = \pm 1.$$

Substitute $x = \pm 1$ in both functions to have y = 3. Thus, the two curves intersect at (-1, 3) and (1, 3). However, the region for which the area is to be calculated lies in the interval [0, 1]. So the area is:

$$A = \int_0^1 ((4 - x^2) - (2x^2 + 1)) dx$$

= $\int_0^1 (3 - 3x^2) dx$
= $[3x - x^3]_0^1$
= 2.

Example

Sketch the region bounded by the graphs of $y = \frac{1}{2}x^2$, $y = x^2$, x = -2 and x = 2, then find its area.

Solution:

The two curves intersect at one point (0, 0).

$$A = \int_{-2}^{2} (x^2 - \frac{1}{2}x^2) dx$$

= $\frac{1}{2} \int_{-2}^{2} x^2 dx$
= $\frac{1}{6} [x^3]_{-2}^2$
= $\frac{8}{3}$.

イロト イヨト イヨト イヨト

Notes.

(1) If the functions f and g are continuous and $f(x) \ge g(x) \ \forall x \in [a, c], g(x) \ge f(x) \ \forall x \in [c, b]$ as shown the figure. Then, we have two regions: R_1 and R_2 .

For The region R_1 in [a, c]: the upper boundary is the graph of the function f and the lower boundary is the graph of the function g. Then, the area is

$$A_1 = \int_a^c \left(f(x) - g(x) \right) \, dx$$

For The region R_2 in [c, b]: the upper boundary is the graph of the function g and the lower boundary is the graph of the function f. Then, the area is

$$A_2 = \int_c^b \left(g(x) - f(x) \right) \, dx$$

The area of region is the sum of the two areas: $A = A_1 + A_2$.

(2) When calculating the area between a curve and the x-axis, you should carry out separate calculations for the parts of the curve above the axis, and the parts of the curve below the axis. The integral for a part of the curve below the axis gives minus the area for that part.

Example

Sketch the region bounded by the graph of y = x(x - 1)(x - 2) and x-axis from x = 0 to x = 2, then find its area.

Solution: To simplify the calculation, we write $y = x(x - 1)(x - 2) = x^3 - 3x^2 + 2x$ For The region R_1 in [0, 1]: the area is $A_1 = \int_0^1 \left(x^3 - 3x^2 + 2x\right) dx = \left[\frac{x^4}{4} - x^3 + x^2\right]_0^1 = \frac{1}{4}$

For The region R₂ in [1, 2]: the area is

$$A_{2} = \int_{1}^{2} \left(x^{3} - 3x^{2} + 2x \right) \, dx = \left[\frac{x^{4}}{4} - x^{3} + x^{2} \right]_{1}^{2} = -\frac{1}{4}$$

The actual value of the area of the region R_2 is $+\frac{1}{4}$. The area of region is the sum of the two areas: $A = A_1 + A_2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

Note. If we had decided to work this out by finding the value of the integral between x = 0 and x = 2, without separating calculations for the parts of the curve above the axis, and the parts of the curve below the axis, we have

$$A = \int_0^2 \left(x^3 - 3x^2 + 2x \right) \, dx = \left[\frac{x^4}{4} - x^3 + x^2 \right]_0^2 = 0$$
 But we know that this is not true.

< ロ > < 同 > < 回 > < 回 > < 回 >

April 15, 2024 10 / 10