Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 15, 2024

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

(1)

Review
(2) Areas

- Region Bounded by a Curve and x-axis
\square Region Bounded by a Curve and y-axis
\square Region Bounded by Two CurvesSolids of Revolution

V Volumes of Revolution Solids (Disk Method)

- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells

4 Arc Length and Surfaces of Revolution

Areas

Example

Sketch the region bounded by the graphs of $y=x^{2}$ and $y=x+6$ over the interval $[-2,3]$, then find its area.

Areas

Example

Sketch the region bounded by the graphs of $y=x^{2}$ and $y=x+6$ over the interval $[-2,3]$, then find its area.

Solution: The intersection points:

$$
\begin{gathered}
x^{2}=x+6 \Rightarrow x^{2}-x-6=0 \\
\Rightarrow(x+2)(x-3)=0 \Rightarrow x=-2 \text { and } x=3 \\
x=-2 \Rightarrow y=4 \Rightarrow(-2,4) \\
x=3 \Rightarrow y=9 \Rightarrow(3,9)
\end{gathered}
$$

Areas

Example

Sketch the region bounded by the graphs of $y=x^{2}$ and $y=x+6$ over the interval $[-2,3]$, then find its area.

Solution: The intersection points:

$$
\begin{gathered}
x^{2}=x+6 \Rightarrow x^{2}-x-6=0 \\
\Rightarrow(x+2)(x-3)=0 \Rightarrow x=-2 \text { and } x=3 \\
x=-2 \Rightarrow y=4 \Rightarrow(-2,4) \\
x=3 \Rightarrow y=9 \Rightarrow(3,9)
\end{gathered}
$$

The area of the region is

$$
\begin{aligned}
A & =\int_{-2}^{3}\left(x+6-x^{2}\right) d x \\
& =\left[\frac{x^{2}}{2}+6 x-\frac{x^{3}}{3}\right]_{-2}^{3} \\
& =\left(\frac{3^{2}}{2}+6(3)-\frac{3^{3}}{3}\right)-\left(\frac{(-2)^{2}}{2}+6(-2)-\frac{(-2)^{3}}{3}\right) \\
& =\frac{27}{2}+\frac{22}{3}=\frac{125}{6}
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graphs of $y=x^{2}$ and $x=y^{2}$ over $[0,1]$, then find its area.

Areas

Example

Sketch the region bounded by the graphs of $y=x^{2}$ and $x=y^{2}$ over $[0,1]$, then find its area.
Solution: We write the two functions in terms of x, so the upper graph: $x=y^{2} \Rightarrow y=\sqrt{x}$.

The intersection points:

$$
\begin{aligned}
& x^{2}=\sqrt{x} \Rightarrow x^{4}=x \\
& x^{4}-x=0 \Rightarrow x\left(x^{3}-1\right)=0 \\
& x=0 \Rightarrow(0,0) \\
& x=1 \Rightarrow(1,1) \\
& A=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x \\
& =\left[\frac{2}{3} x^{\frac{3}{2}}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\left[\frac{2}{3}-\frac{1}{3}\right] \\
& =\frac{1}{3}
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graphs of $x=2 y$ and $x=\frac{y}{2}+3$ and x-axis, then find its area.

Areas

Example

Sketch the region bounded by the graphs of $x=2 y$ and $x=\frac{y}{2}+3$ and x-axis, then find its area.
Solution:
The intersection points:

$$
\begin{aligned}
\frac{y}{2}+3 & =2 y \\
\Rightarrow y+6 & =4 y \\
\Rightarrow y & =2 .
\end{aligned}
$$

Substitute $y=2$ in both functions to have $x=4$.
Thus, the two curves intersect at (4, 2).

Areas

Example

Sketch the region bounded by the graphs of $x=2 y$ and $x=\frac{y}{2}+3$ and x-axis, then find its area.

Solution:

The intersection points:

$$
\begin{aligned}
\frac{y}{2}+3 & =2 y \\
\Rightarrow y+6 & =4 y \\
\Rightarrow y & =2 .
\end{aligned}
$$

Substitute $y=2$ in both functions to have $x=4$. Thus, the two curves intersect at (4, 2).

$$
\begin{aligned}
A & =\int_{0}^{2}\left(\frac{y}{2}+3-2 y\right) d y \\
& =\int_{0}^{2}\left(-\frac{3}{2} y+3\right) d y \\
& =\left[-\frac{3}{4} y^{2}+3 y\right]_{0}^{2} \\
& =-3+6=3
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graphs of $y=x^{2}, y=3 x^{2}, x=0$ and $x=1$, then find its area.
Solution:
The two curves intersect at one point $(0,0)$.

$$
\begin{aligned}
A & =\int_{0}^{1}\left(3 x^{2}-x^{2}\right) d x \\
& =\int_{0}^{1}\left(2 x^{2}\right) d x \\
& =\frac{2}{3}\left[x^{3}\right]_{0}^{1} \\
& =\frac{2}{3}
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graphs of $y=2 x^{2}+1, y=4-x^{2}, x=0$ and $x=1$, then find its area.
Solution:
The intersection points:

$$
\begin{aligned}
2 x^{2}+1 & =4-x^{2} \\
\Rightarrow 3 x^{2} & =3 \\
\Rightarrow x & = \pm 1 .
\end{aligned}
$$

Substitute $x= \pm 1$ in both functions to have $y=3$. Thus, the two curves intersect at $(-1,3)$ and $(1,3)$. However, the region for which the area is to be calculated lies in the interval $[0,1]$. So the area is:

$$
\begin{aligned}
A & =\int_{0}^{1}\left(\left(4-x^{2}\right)-\left(2 x^{2}+1\right)\right) d x \\
& =\int_{0}^{1}\left(3-3 x^{2}\right) d x \\
& =\left[3 x-x^{3}\right]_{0}^{1} \\
& =2
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graphs of $y=\frac{1}{2} x^{2}, y=x^{2}, x=-2$ and $x=2$, then find its area.
Solution:
The two curves intersect at one point $(0,0)$.

$$
\begin{aligned}
A & \left.=\int_{-2}^{2}\left(x^{2}-\frac{1}{2} x^{2}\right)\right) d x \\
& =\frac{1}{2} \int_{-2}^{2} x^{2} d x \\
& =\frac{1}{6}\left[x^{3}\right]_{-2}^{2} \\
& =\frac{8}{3}
\end{aligned}
$$

Areas

Notes.

(1) If the functions f and g are continuous and $f(x) \geq g(x) \forall x \in[a, c], g(x) \geq f(x) \forall x \in[c, b]$ as shown the figure. Then, we have two regions: R_{1} and R_{2}.

For The region R_{1} in $[a, c]$: the upper boundary is the graph of the function f and the lower boundary is the graph of the function g. Then, the area is

$$
A_{1}=\int_{a}^{c}(f(x)-g(x)) d x
$$

For The region R_{2} in [c,b]: the upper boundary is the graph of the function g and the lower boundary is the graph of the function f. Then, the area is

$$
A_{2}=\int_{c}^{b}(g(x)-f(x)) d x
$$

The area of region is the sum of the two areas: $A=A_{1}+A_{2}$.

Areas

(2) When calculating the area between a curve and the x-axis, you should carry out separate calculations for the parts of the curve above the axis, and the parts of the curve below the axis. The integral for a part of the curve below the axis gives minus the area for that part.

Example

Sketch the region bounded by the graph of $y=x(x-1)(x-2)$ and x-axis from $x=0$ to $x=2$, then find its area.
Solution: To simplify the calculation, we write $y=x(x-1)(x-2)=x^{3}-3 x^{2}+2 x$.
\square For The region R_{1} in $[0,1]$: the area is

$$
A_{1}=\int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x=\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1}=\frac{1}{4}
$$

For The region R_{2} in [1, 2]: the area is

$$
A_{2}=\int_{1}^{2}\left(x^{3}-3 x^{2}+2 x\right) d x=\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{1}^{2}=-\frac{1}{4}
$$

The actual value of the area of the region R_{2} is $+\frac{1}{4}$.
The area of region is the sum of the two areas: $A=A_{1}+A_{2}=$
$\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$.

Note. If we had decided to work this out by finding the value of the integral between $x=0$ and $x=2$, without separating calculations for the parts of the curve above the axis, and the parts of the curve below the axis, we have

$$
A=\int_{0}^{2}\left(x^{3}-3 x^{2}+2 x\right) d x=\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{2}=0 \text { But we know that this is not true. }
$$

