Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 15, 2024

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

(1)

Review
(2) Areas

- Region Bounded by a Curve and x-axis
\square Region Bounded by a Curve and y-axis
\square Region Bounded by Two CurvesSolids of Revolution
- Volumes of Revolution Solids (Disk Method)
- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells

4 Arc Length and Surfaces of Revolution

Review

Graph of Some Functions

(1) Lines

The general linear equation in two variables x and y can be written in the form:

$$
a x+b y+c=0 \quad \text { OR } \quad y=m x+b
$$

where a, b and c are constants with a and b not both 0 .
Example: $2 x+y=4$

$$
a=2, \quad b=-1, c=-4
$$

To plot the line, we rewrite the equation to become

$$
y=-2 x+4
$$

Then, we use the following table to make points on the plane:

x	0	2
y	4	0

The line $2 x+y=4$ passes through the points $(0,4)$ and $(2,0)$.

Review

- Special cases of Lines

$$
y=m x+b
$$

$x=a$

If $m=0$, the line is horizontal.
If m is undefined, the line is vertical.

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

(2) Intersection with y-axis: $x=0$

$$
y=1-(0)^{2} \Rightarrow y=1
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

(2) Intersection with y-axis: $x=0$

$$
y=1-(0)^{2} \Rightarrow y=1 \Rightarrow(0,1)
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

(2) Intersection with y-axis: $x=0$

$$
y=1-(0)^{2} \Rightarrow y=1 \Rightarrow(0,1)
$$

The curve pass through the following points

$$
(1,0),(-1,0),(0,1)
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $\quad y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

(2) Intersection with y-axis: $x=0$

$$
y=1-(0)^{2} \Rightarrow y=1 \Rightarrow(0,1)
$$

The curve pass through the following points

$$
(1,0),(-1,0),(0,1)
$$

(3) First derivative test:

$$
y^{\prime}=-2 x=0
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

(2) Intersection with y-axis: $x=0$

$$
y=1-(0)^{2} \Rightarrow y=1 \Rightarrow(0,1)
$$

The curve pass through the following points

$$
(1,0),(-1,0),(0,1)
$$

(3) First derivative test:

$$
y^{\prime}=-2 x=0 \Rightarrow x=0
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

(2) Intersection with y-axis: $x=0$

$$
y=1-(0)^{2} \Rightarrow y=1 \Rightarrow(0,1)
$$

The curve pass through the following points

$$
(1,0),(-1,0),(0,1)
$$

(3) First derivative test:

$$
y^{\prime}=-2 x=0 \Rightarrow x=0
$$

(4) Second derivative test:

$$
y^{\prime \prime}=-2
$$

Review

(2) Quadrature Functions $y=a x^{2}+b x+c$

Example: $y=1-x^{2}$
(1) Intersection with x-axis: $y=0$

$$
1-x^{2}=0 \Rightarrow x= \pm 1 \Rightarrow(1,0),(-1,0)
$$

(2) Intersection with y-axis: $x=0$

$$
y=1-(0)^{2} \Rightarrow y=1 \Rightarrow(0,1)
$$

The curve pass through the following points

$$
(1,0),(-1,0),(0,1)
$$

(3) First derivative test:

$$
y^{\prime}=-2 x=0 \Rightarrow x=0
$$

(4) Second derivative test:

$$
y^{\prime \prime}=-2 \Rightarrow \text { the curve concave downward }
$$

Review

- Special cases of Quadrature Functions
$y=x^{2}$

$$
y=(x+a)^{2}
$$

$$
y=x^{2}+a
$$

$$
y=(x-a)^{2}
$$

$$
y=x^{2}-a
$$

Review

$$
y=-x^{2}+a
$$

$$
y=-x^{2}-a
$$

$$
y=-(x-a)^{2}
$$

Review

$$
x=y^{2}
$$

$$
x=y^{2}+a
$$

$$
x=y^{2}-a
$$

$$
x=(y+a)^{2}
$$

$x=(y-a)^{2}$

$$
y=\sqrt{x}
$$

Review

$$
y=\sqrt{x \pm a}
$$

$$
y=x^{3}
$$

$$
y=|x|
$$

Areas

If $y=f(x)$ is a continuous function on $[a, b]$ and $f(x) \geq 0$ for every $x \in[a, b]$, then the area of the region bounded by the graph of f and x-axis from $x=a$ to $x=b$ is given by the integral:

$$
A=\int_{a}^{b} f(x) d x
$$

If $x=f(y)$ is a continuous function on $[c, d]$ and $f(y) \geq 0 \forall y \in[c, d]$, then the area of the region bounded by the graph of f and y-axis from $y=c$ to $y=d$ is given by the integral:

$$
A=\int_{c}^{d} f(y) d y
$$

Areas

If the functions f and g are continuous and $f(x) \geq g(x) \forall x \in[a, b]$, then the area A of the region bounded by the graphs of f (the upper boundary of R) and g (the lower boundary of R) from $x=a$ to $x=b$ is subtracting the area of the region under g from the area of the region under f. This can be stated as follows:

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

Areas

If the functions f and g are continuous and $f(y) \geq g(y) \forall y \in[c, d]$, then the area A of the region bounded by the graphs of f (the right boundary of R) and g (the left boundary of R) from $y=c$ to $y=d$ is subtracting the area of the region bounded by $g(y)$ from the area of the region bounded by $f(y)$. This can be stated as follows:

$$
A=\int_{c}^{d}(f(y)-g(y)) d y
$$

Areas

Example

Sketch the region bounded by the graph of $y=\sqrt{x}$ and x-axis from $x=0$ to $x=3$, then find its area.

Areas

Example

Sketch the region bounded by the graph of $y=\sqrt{x}$ and x-axis from $x=0$ to $x=3$, then find its area.

Solution:
The area of the region is

$$
\begin{aligned}
A=\int_{0}^{3} \sqrt{x} d x & =\left[\frac{x^{3 / 2}}{\frac{3}{2}}\right]_{0}^{3} \\
& =\frac{2}{3}\left[x^{3 / 2}\right]_{0}^{3} \\
& =2 \sqrt{3}
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graph of $x=y+1$ and x-axis from $y=-1$ to $y=0$, then find its area.

Areas

Example

Sketch the region bounded by the graph of $x=y+1$ and x-axis from $y=-1$ to $y=0$, then find its area.
Solution:

x	0	1
y	-1	0

The line $x=y+1$ passes through the points $(0,-1)$ and (1,0).

Areas

Example

Sketch the region bounded by the graph of $x=y+1$ and x-axis from $y=-1$ to $y=0$, then find its area.
Solution:

x	0	1
y	-1	0

The line $x=y+1$ passes through the points $(0,-1)$ and (1,0).

The area of the region is

$$
\begin{aligned}
A & =\int_{-1}^{0}(y+1) d y \\
& =\left[\frac{y^{2}}{2}+y\right]_{-1}^{0} \\
& =\left[0-\left(\frac{(-1)^{2}}{2}-1\right)\right] \\
& =\frac{1}{2}
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graph of $x=y+1$ and y-axis over the interval $[-1,1]$, then find its area.

Areas

Example

Sketch the region bounded by the graph of $x=y+1$ and y-axis over the interval $[-1,1]$, then find its area.
Solution:

x	0	1
y	-1	0

The line $x=y+1$ passes through the points $(0,-1)$ and $(1,0)$.

Areas

Example

Sketch the region bounded by the graph of $x=y+1$ and y-axis over the interval $[-1,1]$, then find its area.
Solution:

x	0	1
y	-1	0

The line $x=y+1$ passes through the points $(0,-1)$ and (1,0).

The area of the region is

$$
\begin{aligned}
A & =\int_{-1}^{1}(y+1) d y \\
& =\left[\frac{y^{2}}{2}+y\right]_{-1}^{1} \\
& =\left(\frac{(1)^{2}}{2}+1\right)-\left(\frac{(-1)^{2}}{2}+(-1)\right) \\
& =2
\end{aligned}
$$

Areas

Example

Sketch the region bounded by the graph of $y=2-x^{2}$ and x-axis, then find its area.

Solution:

Areas

Example

Sketch the region bounded by the graph of $y=2-x^{2}$ and x-axis, then find its area.

Solution:

The area of the region is

$$
\begin{aligned}
A & =\int_{-\sqrt{2}}^{\sqrt{2}}\left(1-x^{2}\right) d x \\
& =\left[x-\frac{x^{3}}{3}\right]_{-\sqrt{2}}^{\sqrt{2}} \\
& =\left(\sqrt{2}-\frac{(\sqrt{2})^{3}}{3}\right)-\left(-\sqrt{2}-\frac{(-\sqrt{2})^{3}}{3}\right) \\
& =\sqrt{2}+\sqrt{2}-\frac{(\sqrt{2})^{3}}{3}-\frac{(\sqrt{2})^{3}}{3} \\
& =2 \sqrt{2}-\frac{2(\sqrt{2})^{3}}{3}
\end{aligned}
$$

