Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 15, 2024

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

Areas

Region Bounded by a Curve and x-axis

Region Bounded by a Curve and y-axis

Region Bounded by Two Curves

3 Solids of Revolution

- Volumes of Revolution Solids (Disk Method)
- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells
- Arc Length and Surfaces of Revolution

Graph of Some Functions

(1) Lines

The general linear equation in two variables x and y can be written in the form:

ax + by + c = 0 OR y = mx + b

where a, b and c are constants with a and b not both 0.

Example: 2x + y = 4

a = 2, b = -1, c = -4

To plot the line, we rewrite the equation to become

$$y = -2x + 4$$

Then, we use the following table to make points on the plane:

×	0	2
у	4	0

The line 2x + y = 4 passes through the points (0, 4) and (2, 0).

• Special cases of Lines

$$y = mx + b$$

y = b

x = a

If m is undefined, the line is vertical.

(2) Quadrature Functions $y = ax^2 + bx + c$

メロト メポト メヨト メヨト

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

 $1 - x^2 = 0 \Rightarrow x = \pm 1$

メロト メポト メヨト メヨト

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

メロト メポト メモト メモト

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

(2) Intersection with y-axis: x = 0

$$y = 1 - (0)^2 \Rightarrow y = 1$$

メロト メポト メヨト メヨト

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

(2) Intersection with y-axis: x = 0

$$y = 1 - (0)^2 \Rightarrow y = 1 \Rightarrow (0, 1)$$

メロト メポト メヨト メヨト

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

(2) Intersection with y-axis: x = 0

$$y = 1 - (0)^2 \Rightarrow y = 1 \Rightarrow (0, 1)$$

The curve pass through the following points

(1, 0), (-1, 0), (0, 1)

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

(2) Intersection with y-axis: x = 0

$$y = 1 - (0)^2 \Rightarrow y = 1 \Rightarrow (0, 1)$$

The curve pass through the following points

(1, 0), (-1, 0), (0, 1)

(3) First derivative test:

$$y' = -2x = 0$$

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

(2) Intersection with y-axis: x = 0

$$y = 1 - (0)^2 \Rightarrow y = 1 \Rightarrow (0, 1)$$

The curve pass through the following points

(1, 0), (-1, 0), (0, 1)

(3) First derivative test:

$$y' = -2x = 0 \Rightarrow x = 0$$

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

(2) Intersection with y-axis: x = 0

$$y = 1 - (0)^2 \Rightarrow y = 1 \Rightarrow (0, 1)$$

The curve pass through the following points

(1, 0), (-1, 0), (0, 1)

(3) First derivative test:

$$y' = -2x = 0 \Rightarrow x = 0$$

(日) (四) (日) (日) (日)

(4) Second derivative test:

$$y'' = -2$$

(2) Quadrature Functions $y = ax^2 + bx + c$

Example: $y = 1 - x^2$

(1) Intersection with x-axis: y = 0

$$1 - x^2 = 0 \Rightarrow x = \pm 1 \Rightarrow (1, 0), (-1, 0)$$

(2) Intersection with y-axis: x = 0

$$y = 1 - (0)^2 \Rightarrow y = 1 \Rightarrow (0, 1)$$

The curve pass through the following points

(1, 0), (-1, 0), (0, 1)

(3) First derivative test:

$$y' = -2x = 0 \Rightarrow x = 0$$

(4) Second derivative test:

 $y^{\prime\prime}=-2$ \Rightarrow the curve concave downward

Prof. Mohamad Alghamdi

April 15, 2024 6 / 24

April 15, 2024 7 / 24

 $x = (y + a)^2$

 $x = (y - a)^2$

 $y = \sqrt{x}$

イロト イヨト イヨト イヨト

Areas

If y = f(x) is a continuous function on [a, b] and $f(x) \ge 0$ for every $x \in [a, b]$, then the area of the region bounded by the graph of f and x-axis from x = a to x = b is given by the integral:

$$A = \int_a^b f(x) \ dx$$

If x = f(y) is a continuous function on [c, d] and $f(y) \ge 0 \quad \forall y \in [c, d]$, then the area of the region bounded by the graph of f and y-axis from y = c to y = d is given by the integral:

$$A = \int_{c}^{d} f(y) \, dy$$

Prof. Mohamad Alghamdi

MATH 106

April 15, 2024 10 / 24

Areas

If the functions f and g are continuous and $f(x) \ge g(x) \forall x \in [a, b]$, then the area A of the region bounded by the graphs of f (the upper boundary of R) and g (the lower boundary of R) from x = a to x = b is subtracting the area of the region under g from the area of the region under f. This can be stated as follows:

$$A = \int_a^b \left(f(x) - g(x) \right) \, dx$$

Prof. Mohamad Alghamdi

э

Image: Image:

- (E

Areas

If the functions f and g are continuous and $f(y) \ge g(y) \forall y \in [c, d]$, then the area A of the region bounded by the graphs of f (the right boundary of R) and g (the left boundary of R) from y = c to y = d is subtracting the area of the region bounded by g(y) from the area of the region bounded by f(y). This can be stated as follows:

Prof. Mohamad Alghamdi

э

Sketch the region bounded by the graph of $y = \sqrt{x}$ and x - axis from x = 0 to x = 3, then find its area.

イロト イヨト イヨト イヨト

Ξ.

Sketch the region bounded by the graph of $y = \sqrt{x}$ and x - axis from x = 0 to x = 3, then find its area.

Solution:

The area of the region is

$$A = \int_0^3 \sqrt{x} \, dx = \left[\frac{x^{3/2}}{\frac{3}{2}} \right]_0^3$$
$$= \frac{2}{3} \left[x^{3/2} \right]_0^3$$
$$= 2\sqrt{3}.$$

<ロト <問ト < 目と < 目と

Ξ.

Sketch the region bounded by the graph of x = y + 1 and x - axis from y = -1 to y = 0, then find its area.

メロト メポト メモト メモト

3

Sketch the region bounded by the graph of x = y + 1 and x - axis from y = -1 to y = 0, then find its area.

Solution:

х	0	1
У	-1	0

The line x = y+1 passes through the points (0, -1) and (1, 0).

Sketch the region bounded by the graph of x = y + 1 and x-axis from y = -1 to y = 0, then find its area.

Solution:

х	0	1
у	-1	0

The line x = y+1 passes through the points (0, -1) and (1, 0).

The area of the region is

$$A = \int_{-1}^{0} (y+1) \, dy$$

= $\left[\frac{y^2}{2} + y \right]_{-1}^{0}$
= $\left[0 - \left(\frac{(-1)^2}{2} - 1 \right) \right]$
= $\frac{1}{2}$.

(日) (四) (日) (日) (日)

æ

Sketch the region bounded by the graph of x = y + 1 and y - axis over the interval [-1, 1], then find its area.

(日) (四) (日) (日) (日)

3

Sketch the region bounded by the graph of x = y + 1 and y - axis over the interval [-1, 1], then find its area.

Solution:

x	0	1
у	-1	0

The line x = y+1 passes through the points (0, -1) and (1, 0).

2

イロト イポト イヨト イヨト

Sketch the region bounded by the graph of x = y + 1 and y - axis over the interval [-1, 1], then find its area.

Solution:

x	0	1
у	-1	0

The line x = y+1 passes through the points (0, -1) and (1, 0).

The area of the region is

$$A = \int_{-1}^{1} (y+1) \, dy$$

= $\left[\frac{y^2}{2} + y \right]_{-1}^{1}$
= $\left(\frac{(1)^2}{2} + 1 \right) - \left(\frac{(-1)^2}{2} + (-1) \right)$
= 2.

(日) (四) (日) (日) (日)

2

Sketch the region bounded by the graph of $y = 2 - x^2$ and x - axis, then find its area.

Solution:

3

メロト メポト メヨト メヨト

Sketch the region bounded by the graph of $y = 2 - x^2$ and x - axis, then find its area.

Solution:

The area of the region is

$$A = \int_{-\sqrt{2}}^{\sqrt{2}} (1 - x^2) dx$$

= $\left[x - \frac{x^3}{3}\right]_{-\sqrt{2}}^{\sqrt{2}}$
= $\left(\sqrt{2} - \frac{(\sqrt{2})^3}{3}\right) - \left(-\sqrt{2} - \frac{(-\sqrt{2})^3}{3}\right)$
= $\sqrt{2} + \sqrt{2} - \frac{(\sqrt{2})^3}{3} - \frac{(\sqrt{2})^3}{3}$
= $2\sqrt{2} - \frac{2(\sqrt{2})^3}{3}$.

<ロト <問ト < 目と < 目と

3