Integral Calculus

Prof. Mohamad Alghamdi

Department of Mathematics

April 24, 2024

Chapter 7: APPLICATIONS OF INTEGRATION

Main Contents.

(1)

Review
(2) Areas

- Region Bounded by a Curve and x-axis
- Region Bounded by a Curve and y-axis

■ Region Bounded by Two Curves
(3) Solids of Revolution

- Volumes of Revolution Solids (Disk Method)
- Volumes of Revolution Solids (Washer Method)
- Method of Cylindrical Shells

4 Arc Length and Surfaces of Revolution

Volumes of Revolution Solids (Washer Method)

\square Let R be a region bounded by the graphs of $f(x)$ and $g(x)$ from $x=a$ to $x=b$ such that $f(x) \geq g(x)$ for all $x \in[a, b]$.
\square Let S be a solid generated by revolving the region R about x-axis.
\square The volume of the solid S is equal to the difference between the volumes of the two solids generated by revolving the regions under the functions $f(x)$ and $g(x)$ about the x-axis as follows:The outer radius: $y_{1}=f(x)$The inner radius: $y_{2}=g(x)$The thickness: $d x$The volume of a washer is $d V=\pi\left[(\text { the outer radius })^{2}-\right.$ (the inner radius $\left.^{2}\right]$. thickness.
\square This implies $d V=\pi\left[(f(x))^{2}-(g(x))^{2}\right] d x$.
\square Hence, the volume of the solid over the interval $[a, b]$ is

$$
V=\pi \int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x
$$

Volumes of Revolution Solids (Washer Method)

\square Similarly, let R be a region bounded by the graphs of $f(y)$ and $g(y)$ such that $f(y) \geq g(y)$ for all $y \in[c, d]$ as shown in the figure.
\square Let S be a solid generated by revolving the region R about y-axis.The outer radius: $x_{1}=f(y)$The inner radius: $x_{2}=g(y)$The thickness: $d y$
\square The volume of a washer is $d V=\pi\left[(\text { the outer radius })^{2}-(\text { the inner radius })^{2}\right]$. thickness.
\square This implies $d V=\pi\left[(f(y))^{2}-(g(y))^{2}\right] d y$.
\square Hence, the volume of the solid over the interval $[c, d]$ is

$$
V=\pi \int_{c}^{d}\left[(f(y))^{2}-(g(y))^{2}\right] d y
$$

Volumes of Revolution Solids (Washer Method)

Theorem:

(1) If R is a region bounded by the graphs of $y=f(x)$ and $y=g(x)$ on the interval $[a, b]$ such that $f \geq g$, the volume of the revolution solid generated by revolving R about x-axis is

$$
V=\pi \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x
$$

1. The two points (area boundaries) on the x-axis.
2. Rotation about the x-axis.
3. The rectangles are perpendicular to the axis of rotation (x-axis).

Volumes of Revolution Solids (Washer Method)

(2) If R is a region bounded by the graphs of $x=f(y)$ and $x=g(y)$ on the interval [$c, d]$ such that $f \geq g$, the volume of the revolution solid generated by revolving R about y-axis is

$$
V=\pi \int_{c}^{d}\left([f(y)]^{2}-[g(y)]^{2}\right) d y
$$

1. The two points (area boundaries) on the y-axis.
2. Rotation about the y-axis.
3. The rectangles are perpendicular to the axis of rotation (y-axis).

Volumes of Revolution Solids (Washer Method)

Example

Let R be a region bounded by the graphs of the functions $y=x^{2}$ and $y=2 x$. Evaluate the volume of the solid generated by revolving R about x-axis.

Volumes of Revolution Solids (Washer Method)

Example

Let R be a region bounded by the graphs of the functions $y=x^{2}$ and $y=2 x$. Evaluate the volume of the solid generated by revolving R about x-axis.

Solution: First, we check whether the graphs of the two functions are intersecting or not.

$$
\begin{aligned}
f(x)=g(x) \Rightarrow x^{2}=2 x & \Rightarrow x^{2}-2 x=0 \\
& \Rightarrow x(x-2)=0 \\
& \Rightarrow x=0 \text { or } x=2
\end{aligned}
$$

Volumes of Revolution Solids (Washer Method)

Example

Let R be a region bounded by the graphs of the functions $y=x^{2}$ and $y=2 x$. Evaluate the volume of the solid generated by revolving R about x-axis.

Solution: First, we check whether the graphs of the two functions are intersecting or not.

$$
\begin{aligned}
f(x)=g(x) \Rightarrow x^{2}=2 x & \Rightarrow x^{2}-2 x=0 \\
& \Rightarrow x(x-2)=0 \\
& \Rightarrow x=0 \text { or } x=2
\end{aligned}
$$

By substitution, we have that the two curves intersect in two points $(0,0)$ and $(2,4)$.

Volumes of Revolution Solids (Washer Method)

The figure shows the region R and the solid generated by revolving the region about the x-axis. The vertical rectangles generate a washer where
\square the outer radius: $y_{1}=2 x$,
\square the inner radius: $y_{2}=x^{2}$ andthe thickness: $d x$.
The volume of the washer is $d V=\pi\left[(2 x)^{2}-\left(x^{2}\right)^{2}\right] d x$.
Hence, the volume of the solid over the interval $[0,2]$ is

$$
\begin{aligned}
V=\pi \int_{0}^{2}\left((2 x)^{2}-\left(x^{2}\right)^{2}\right) d x & =\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x \\
& =\pi\left[\frac{4 x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{2}=\pi\left[\frac{32}{3}-\frac{32}{5}\right]=\frac{64}{15} \pi
\end{aligned}
$$

Volumes of Revolution Solids (Washer Method)

Example

Consider the same region as in the previous example enclosed by the graphs of $y=x^{2}$ and $y=2 x$. Revolve the region about y-axis instead and find the volume of the generated solid.

Volumes of Revolution Solids (Washer Method)

Example

Consider the same region as in the previous example enclosed by the graphs of $y=x^{2}$ and $y=2 x$. Revolve the region about y-axis instead and find the volume of the generated solid.

Solution: The figure shows the region R and the solid generated by revolving the region about the y-axis.

Since the revolution is about the y-axis, we need to rewrite the equations in term of y i.e., $x_{1}=f(y)$ and $x_{2}=g(y)$.

$$
\begin{aligned}
& y=x^{2} \Rightarrow x=\sqrt{y} \Rightarrow f(y)=\sqrt{y} \\
& y=2 x \Rightarrow x=\frac{y}{2} \Rightarrow g(y)=\frac{y}{2} .
\end{aligned}
$$

Volumes of Revolution Solids (Washer Method)

The two horizontal rectangles generate a washer where
the outer radius: $x_{1}=\sqrt{y}$,
the inner radius: $x_{2}=\frac{y}{2}$ andthe thickness: $d y$.
The volume of the washer is $d V=\pi\left[(\sqrt{y})^{2}-\left(\frac{y}{2}\right)^{2}\right] d y$.

Hence, the volume of the solid over the interval $[0,4]$ is

$$
\begin{aligned}
V=\pi \int_{0}^{4}\left((\sqrt{y})^{2}-\left(\frac{y}{2}\right)^{2}\right) d y & =\pi \int_{0}^{4}\left(y-\frac{y^{2}}{4}\right) d y \\
& =\pi\left[\frac{y^{2}}{2}-\frac{y^{3}}{12}\right]_{0}^{4}=\frac{8}{3} \pi .
\end{aligned}
$$

Volumes of Revolution Solids (Washer Method)

Example

Consider a region R bounded by the graphs of the functions $y=\sqrt{x}, y=6-x$ and x-axis. Revolve the region about y-axis and find the volume of the generated solid.

Volumes of Revolution Solids (Washer Method)

Example

Consider a region R bounded by the graphs of the functions $y=\sqrt{x}, y=6-x$ and x-axis. Revolve the region about y-axis and find the volume of the generated solid.

Solution: Since the revolution is about y-axis, we need to rewrite the functions in terms of y i.e., $x=f(y)$ and $x=g(y)$.

$$
y=\sqrt{x} \Rightarrow x=y^{2}=f(y) \text { and } y=6-x \Rightarrow x=6-y=g(y) .
$$

Now we see if the graphs of the two functions intersect:

$$
f(y)=g(y) \Rightarrow y^{2}=6-y \Rightarrow y^{2}+y-6=0 \Rightarrow(y+3)(y-2)=0 \Rightarrow y=-3 \text { or } y=2
$$

Note. Since $y=\sqrt{x}$, we ignore the value $y=-3$.
By substituting $y=2$ into the two functions, we have $x=4$. Thus, the two curves intersect in one point (4,2). The solid S generated by revolving the region R about y-axis is shown in the figure.

Volumes of Revolution Solids (Washer Method)

Also, the revolution is about the y-axis, so we have a horizontal rectangle that generates a washer where
\square the outer radius: $x_{1}=6-y$,
\square the inner radius: $x_{2}=y^{2}$ andthe thickness: $d y$.

The volume of the washer is $d V=\pi\left[(6-y)^{2}-\left(y^{2}\right)^{2}\right] d y$.

The volume of the solid over the interval $[0,2]$ is

$$
V=\pi \int_{0}^{2}\left[(6-y)^{2}-\left(y^{2}\right)^{2}\right] d y=\pi\left[-\frac{(6-y)^{3}}{3}-\frac{y^{5}}{5}\right]_{0}^{2}=\pi\left[\left(-\frac{64}{3}-\frac{32}{5}\right)-\left(-\frac{216}{3}-0\right)\right]=\frac{664}{15} \pi
$$

Volumes of Revolution Solids (Washer Method)

Example

Consider the same region as in the previous example enclosed by the graphs of $y=\sqrt{x}, y=6-x$ and x-axis. Revolve the region about x-axis instead and find the volume of the generated solid.

Volumes of Revolution Solids (Washer Method)

Example

Consider the same region as in the previous example enclosed by the graphs of $y=\sqrt{x}, y=6-x$ and x-axis. Revolve the region about x-axis instead and find the volume of the generated solid.

Solution:

Note. The solid is made up of two separate regions: R_{1} and R_{2}, and each requires its own integral. We use the disk method to evaluate the volume of the solid generated by revolving each region.

Volumes of Revolution Solids (Washer Method)

(1) Region R_{1} : Revolution of R_{1} about the x-axis generates a solid S_{1} with a vertical disk of radius $y=\sqrt{x}$ and thickness $d x$.

$$
V_{1}=\pi \int_{0}^{4}(\sqrt{x})^{2} d x=\pi \int_{0}^{4} x d x=\frac{\pi}{2}\left[x^{2}\right]_{0}^{4}=8 \pi
$$

(2) Region R_{2} : Revolution of R_{2} about the x-axis generates a solid S_{2} with a vertical disk of radius $y=6-x$ and thickness $d x$.

$$
V_{2}=\pi \int_{4}^{6}(6-x)^{2} d x=\pi \int_{4}^{6}(6-x)^{2} d x=-\frac{\pi}{3}\left[(6-x)^{3}\right]_{4}^{6}=\frac{8}{3} \pi
$$

The volume of the total solid:

$$
\begin{aligned}
V & =V_{1}+V_{2} \\
& =8 \pi+\frac{8}{3} \pi=\frac{32}{3} \pi .
\end{aligned}
$$

