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Chapter 7: APPLICATIONS OF INTEGRATION
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Volumes of Revolution Solids (Washer Method)
Let R be a region bounded by the graphs of f (x) and g(x) from x = a to x = b such that f (x) ≥ g(x) for all x ∈ [a, b].

Let S be a solid generated by revolving the region R about x-axis.

The volume of the solid S is equal to the difference between the volumes of the two solids generated by revolving the regions
under the functions f (x) and g(x) about the x-axis as follows:

The outer radius: y1 = f (x)
The inner radius: y2 = g(x)
The thickness: dx
The volume of a washer is dV = π

[
(the outer radius)2 − (the inner radius)2

]
. thickness.

This implies dV = π
[

(f (x))2 − (g(x))2
]
dx .

Hence, the volume of the solid over the interval [a, b] is

V = π

∫ b

a

[(
f (x)

)2 −
(
g(x)

)2
]
dx.
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Volumes of Revolution Solids (Washer Method)
Similarly, let R be a region bounded by the graphs of f (y) and g(y) such that f (y) ≥ g(y) for all y ∈ [c, d ] as shown in the

figure.

Let S be a solid generated by revolving the region R about y -axis.

The outer radius: x1 = f (y)
The inner radius: x2 = g(y)
The thickness: dy

The volume of a washer is dV = π
[

(the outer radius)2 − (the inner radius)2
]
. thickness.

This implies dV = π
[

(f (y))2 − (g(y))2
]
dy .

Hence, the volume of the solid over the interval [c, d ] is

V = π

∫ d

c

[(
f (y)

)2 −
(
g(y)

)2
]
dy.
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Volumes of Revolution Solids (Washer Method)

Theorem:

(1) If R is a region bounded by the graphs of y = f (x) and y = g(x) on the interval [a, b] such that f ≥ g , the volume of the
revolution solid generated by revolving R about x-axis is

V = π

∫ b

a

([
f (x)

]2−
[
g(x)

]2
)
dx.

1. The two points (area boundaries) on
the x−axis.

2. Rotation about the x−axis.

3. The rectangles are perpendicular to
the axis of rotation (x−axis).
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Volumes of Revolution Solids (Washer Method)

(2) If R is a region bounded by the graphs of x = f (y) and x = g(y) on the interval [c, d ] such that f ≥ g , the volume of the
revolution solid generated by revolving R about y -axis is

V = π

∫ d

c

([
f (y)

]2−
[
g(y)

]2
)
dy.

1. The two points (area boundaries) on
the y−axis.

2. Rotation about the y−axis.

3. The rectangles are perpendicular to
the axis of rotation (y−axis).
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Volumes of Revolution Solids (Washer Method)

Example
Let R be a region bounded by the graphs of the functions y = x2 and y = 2x. Evaluate the volume of the solid generated by
revolving R about x-axis.

Solution: First, we check whether the graphs of the two functions are intersecting or not.

f (x) = g(x)⇒ x2 = 2x ⇒ x2 − 2x = 0

⇒ x(x − 2) = 0

⇒ x = 0 or x = 2.

By substitution, we have that the two curves intersect in two points (0, 0) and (2, 4).
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Volumes of Revolution Solids (Washer Method)

The figure shows the region R and the solid generated by revolving the region about the x-axis. The vertical rectangles generate
a washer where

the outer radius: y1 = 2x ,

the inner radius: y2 = x2 and
the thickness: dx .

The volume of the washer is dV = π
[

(2x)2 − (x2)2
]
dx .

Hence, the volume of the solid over the interval [0, 2] is

V = π

∫ 2

0

(
(2x)2 − (x2)2

)
dx = π

∫ 2

0
(4x2 − x4) dx

= π
[ 4x3

3
−

x5

5

]2

0
= π

[ 32

3
−

32

5

]
=

64

15
π.
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Volumes of Revolution Solids (Washer Method)

Example
Consider the same region as in the previous example enclosed by the graphs of y = x2 and y = 2x. Revolve the region about
y-axis instead and find the volume of the generated solid.

Solution: The figure shows the region R and the solid generated by revolving the region about the y -axis.

Since the revolution is about the y -axis, we need to rewrite the equations in term of y i.e., x1 = f (y) and x2 = g(y).

y = x2 ⇒ x =
√
y ⇒ f (y) =

√
y

y = 2x ⇒ x =
y

2
⇒ g(y) =

y

2
.
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Volumes of Revolution Solids (Washer Method)

The two horizontal rectangles generate a washer where

the outer radius: x1 =
√

y ,

the inner radius: x2 = y
2

and
the thickness: dy .

The volume of the washer is dV = π
[

(
√
y)2 − ( y

2
)2
]
dy .

Hence, the volume of the solid over the interval [0, 4] is

V = π

∫ 4

0

(
(
√
y)2 − (

y

2
)2
)

dy = π

∫ 4

0

(
y −

y2

4

)
dy

= π
[ y2

2
−

y3

12

]4

0
=

8

3
π.
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Volumes of Revolution Solids (Washer Method)

Example
Consider a region R bounded by the graphs of the functions y =

√
x, y = 6− x and x-axis. Revolve the region about y-axis

and find the volume of the generated solid.

Solution: Since the revolution is about y -axis, we need to rewrite the functions in terms of y i.e., x = f (y) and x = g(y).

y =
√

x ⇒ x = y2 = f (y) and y = 6− x ⇒ x = 6− y = g(y).

Now we see if the graphs of the two functions intersect:

f (y) = g(y)⇒ y2 = 6− y ⇒ y2 + y − 6 = 0⇒ (y + 3)(y − 2) = 0⇒ y = −3 or y = 2

Note. Since y =
√

x , we ignore the value y = −3.

By substituting y = 2 into the two functions, we have x = 4. Thus, the two curves intersect in one point (4, 2). The solid S
generated by revolving the region R about y -axis is shown in the figure.
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Volumes of Revolution Solids (Washer Method)

Also, the revolution is about the y -axis, so we have a horizontal rectangle that generates a washer where
the outer radius: x1 = 6− y ,

the inner radius: x2 = y2 and
the thickness: dy .

The volume of the washer is dV = π
[
(6− y)2 − (y2)2] dy .

The volume of the solid over the interval [0, 2] is

V = π

∫ 2

0

[
(6− y)2 − (y2)2

]
dy = π

[
−

(6− y)3

3
−

y5

5

]2

0
= π

[(
−

64

3
−

32

5

)
−
(
−

216

3
− 0
)]

=
664

15
π.
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Volumes of Revolution Solids (Washer Method)

Example
Consider the same region as in the previous example enclosed by the graphs of y =

√
x, y = 6− x and x-axis. Revolve the

region about x-axis instead and find the volume of the generated solid.

Solution:

Note. The solid is made up of two separate regions: R1 and R2, and each requires its own integral. We use the disk method
to evaluate the volume of the solid generated by revolving each region.
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Volumes of Revolution Solids (Washer Method)

(1) Region R1: Revolution of R1 about the x-axis generates a solid S1 with a vertical disk of radius y =
√
x and thickness dx .

V1 = π

∫ 4

0
(
√

x)2 dx = π

∫ 4

0
x dx =

π

2

[
x2
]4

0
= 8π.

(2) Region R2: Revolution of R2 about the x-axis generates a solid S2 with a vertical disk of radius y = 6− x and thickness
dx .

V2 = π

∫ 6

4
(6− x)2 dx = π

∫ 6

4
(6− x)2 dx = −

π

3

[
(6− x)3

]6

4
=

8

3
π.

The volume of the total solid:

V = V1 + V2

= 8π +
8

3
π =

32

3
π.
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