Financial Mathematics

Prof. Mohamad Alghamdi

Department of Mathematics

April 15, 2025

Chapter 5: Variable interest rates: Term structure of interest rates

Main Content

Term structure of interest rates

2 Yield curve

Spot rates

★ 3 >

Term structure of interest rates. The relationship between yield and maturity. Note: the longer the term, the higher the rate.

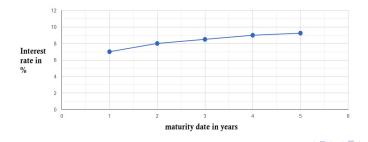
A yield curve is a graph that shows interest rates (vertical axis) versus (maturity date) duration of a investment/loan (horizontal axis).

Example. A bank offers certificates of deposit with the following interest rates:

length of the investment (in years)	1 year	2 years	3 years	4 years	5 years
Interest rate	7%	8%	8.5%	9%	9.25%

Graph the yield curve for these interest rates.

Solution:



Notes.

The interest rates appearing in the yield curve are called the spot rates. Thus, for Example 1, the spot rates are 7%, 8%, 8.5%, 9% and 9.25%.

The j year spot rate (s_i) is the rate of interest charged in a loan paid with a unique payment at the end of j years.

The *j* year spot rate s_j is as an effective annual rate of interest, the current *j* year interest factor (the j-year accumulation factor) is $(1 + s_j)^j$. Money invested now multiply by $(1 + s_j)$ in *j* years.

For a zero coupon with face value F, the price is $P = F(1 + s_j)^{-j}$ and this implies $F = P(1 + s_j)^j$.

If the current interest rates follow the accumulation function is a(t), t > 0, then $a(j) = (1 + s_j)^j$ and this implies $s_j = (a(j))^{1/j} - 1$.

Example. The following table lists prices of zero-coupon \$ 1000 bonds with their respective maturities:

Number of years to maturity	1 year	2 years	5 years	10 years
Price	980.39	957.41	888.18	781.20

Calculate the 1year, 2year, 5year, and 10year spot rates of interest.

Solution: Remember: $P = F(1 + s_j)^{-j}$, so $(1000)(1 + s_1)^{-1} = 980.39 \Rightarrow (1 + s_1)^{-1} = \frac{980.39}{1000} \Rightarrow (1 + s_1)^1 = \frac{1000}{980.39} \Rightarrow s_1 = \frac{1000}{980.39} - 1 = 2\%$ $(1000)(1 + s_2)^{-2} = 957.41 \Rightarrow (1 + s_2)^{-2} = \frac{957.41}{1000} \Rightarrow (1 + s_2)^2 = \frac{1000}{957.41} \Rightarrow s_2 = (\frac{1000}{587.41})^{\frac{1}{2}} - 1 = 2.2\%$ $(1000)(1 + s_5)^{-5} = 888.18 \Rightarrow (1 + s_5)^{-5} = \frac{888.18}{1000} \Rightarrow (1 + s_5)^5 = \frac{1000}{888.18} \Rightarrow s_5 = (\frac{1000}{888.18})^{\frac{1}{5}} - 1 = 2.40\%$ $(1000)(1 + s_{10})^{-10} = 781.20 \Rightarrow (1 + s_{10})^{-10} = \frac{781.20}{781.20} \Rightarrow (1 + s_{10})^{-1$

The present value at time zero of a cashflow

Time	0	1	2	 п
Contributions	0	<i>C</i> ₁	<i>C</i> ₂	 Cn

following the spot rates

Maturity Time	1	2	 п
Spot rate	s_1	<i>s</i> ₂	 s _n

is given by the formula $PV = \sum_{j=1}^{n} C_j (1+s_j)^{-j}$

Example. A 2year 1000 par value 6% bond with semi-annual coupons using the spot rates:

Maturity time (in half years)	1	2	3	4
Nominal annual interest rate convertible semiannually	4%	5%	6%	7%

(1) Find the price of the bond.

(2) Find the annual effective yield rate of the previous bond, if bought at the price in (1).

Solution: (1) Remember: coupon payment $Fr = 1000 \times 3\% = 30$.

Time (in half years)	1	2	3	4
Payments	30	30	30	30+1000

The price of the bond is the present value of the payments:

 $PV = (30)(1 + \frac{0.04}{2})^{-1} + (30)(1 + \frac{0.05}{2})^{-2} + (30)(1 + \frac{0.06}{2})^{-3} + (30)(1 + \frac{0.07}{2})^{-4} + (1000)(1 + \frac{0.07}{2})^{-4} = 983.0059_{\odot}$

Example. A 2year 1000 par value 6% bond with semi-annual coupons using the spot rates:

Maturity time (in half years)	1	2	3	4
Nominal annual interest rate convertible semiannually	4%	5%	6%	7%

Find the price of the bond.

(2) Find the annual effective yield rate of the previous bond, if bought at the price in (1).

Solution: (1) Remember: coupon payment $Fr = 1000 \times 3\% = 30$.

Time (in half years)	1	2	3	4
Payments	30	30	30	30+1000

The price of the bond is the present value of the payments:

 $PV = (30)(1 + \frac{0.04}{2})^{-1} + (30)(1 + \frac{0.05}{2})^{-2} + (30)(1 + \frac{0.06}{2})^{-3} + (30)(1 + \frac{0.07}{2})^{-4} + (1000)(1 + \frac{0.07}{2})^{-4} = 983.0059$

(2) To find the yield rate, we solve for $i^{(2)}$ in the price equation: $P = Fr a_{\overline{n}|i} + C(1+i)^{-n}$.

$$983.0059 = (30)a_{\overline{4}|}\frac{i(2)}{2} + 1000(1 + \frac{i^{(2)}}{2})^{-4} \Rightarrow i^{(2)} = 6.92450\% \Rightarrow i = 7.0443\%$$