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Simple Summary: Interspecies SCNT-based cloning and in vitro production of interspecies SCNT-
derived embryos allows cells that have undergone terminal differentiation to be reprogrammed
to become totipotent cells. The development of the interspecific Somatic cell nuclear transfer oryx
in vitro for the first time in Saudi Arabia will promote additional research on animal reproductive
cloning for the preservation of endangered species.

Abstract: Cloning, commonly referred to as somatic cell nuclear transfer (SCNT), is the technique of
enucleating an oocyte and injecting a somatic cell into it. This study was carried out with interspecific
SCNT technology to clone the Arabian Oryx utilizing the oryx’s fibroblast cells and transfer it to
the enucleated oocytes of a domestic cow. The recipient oocytes were extracted from the cows that
had been butchered. Oryx somatic nuclei were introduced into cow oocytes to produce embryonic
cells. The study was conducted on three groups, Oryx interspecific somatic cell nuclear transfer into
enucleated oocytes of domestic cows, cow SCNT “the same bovine family species”, used as a control
group, and in vitro fertilized (IVF) cows to verify all media used in this work. The rates of different
embryo developmental stages varied slightly (from 1- cell to morula stage). Additionally, the oryx
interspecies Somatic cell nuclear transfer blastocyst developmental rate (9.23%) was comparable to
that of cow SCNT (8.33%). While the blastula stage rate of the (IVF) cow embryos exhibited a higher
cleavage rate (42%) in the embryo development stage. The results of this study enhanced domestic
cow oocytes’ ability to support interspecific SCNT cloned oryx, and generate a viable embryo that
can advance to the blastula stage.

Keywords: iSCNT; cloning; Arabian Oryx; blastocyst

1. Introduction

By the early 1970s, the Arabian Oryx had become extinct in the wild but was still
thriving in zoos and private preserves. The Arabian Oryx was the first animal to be desig-
nated as vulnerable in 2011 after being listed as extinct in the wild and subsequently as
endangered in 1986 on the International Union for Conservation of Nature’s (IUCN) Red
List. The Arabian oryxes are classified as belonging to the family Bovidae, subfamily Hippo-
tragini, and genus Antelope [1–3]. In Saudi Arabia, the National Wildlife Research Center
(NWRC) under the Saudi Wildlife Commission (SWC) launched an oryx conservation and
restoration effort in 1989. Simultaneous conservation initiatives for the preservation of large
expanses within the original Arabian Oryx range, as well as the breeding of oryx in captivity
at the NWRC in Taif [4]. The karyotype of these species has already been identified. The
diploid chromosome number of the Arabian oryx, Oryx leucoryx, is 2n = 58 [5,6]. Since
somatic cell nuclear transfer was utilized to successfully clone Dolly the sheep in 1997, other
researchers have used these methods to clone both domestic and wild animals. Through the
development of the so-called interspecies somatic cell nuclear transfer technique over the
past decade, it is now possible to clone endangered species of animals. Many researchers
have conducted successful experiments on cloning mammals of the same species have
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published their findings, including sheep [7,8]; rabbits [9,10]; pigs [11]; mice [12]; mon-
keys [13]; goats [14,15]; and camels [16]. These studies opened new horizons for scientists
to continue cloning research, such as interspecies and interspecific cloning of Bos gaurus
into bovines [17]; various mammal species into bovine [18]; Bos gaurus into bovine [19,20];
Bos javanicus into bovine [21]; bovine-ovine [22]; cat into bovine [23,24]; cattle, goat, and
cat into Bubalus bubalis buffalo [25]; cattle and pig [26]; cat into cow [27]; cat into cow [28];
human into bovine [29]; human into rabbit [30], Asiatic cheetah into cat [31]; human into
bovine [32]; human into rabbit [33]; argali (Ovis ammon into sheep) [34]. The ability of
donor cell nuclei to undergo epigenetic changes in the cytoplasm of rebuilt oocytes [35–37]
and the prevalence of programmed cell death in nuclear donor cells and cloned embryos
are two major factors that appear to have a significant impact on SCNT efficiency [38–40].
Epigenetic reprogramming is regarded to be the main factor behind most developmental
abnormalities in clones [41]. Challenges including mitochondrial/genomic DNA com-
patibility, activation of the donor cell’s embryonic genome by the recipient oocyte, and
a lack of suitable foster mothers for interspecific somatic cell nuclear transfer embryos
prevent the generation of interspecific somatic cell nuclear transfer animals [42]. Despite
substantial challenges, SCNT is frequently viewed as a way to save endangered species or
bring back extinct species. Every few years, whenever some progress has been achieved
in the topic, the “de-extinction” of the mammoth is discussed in popular media [43]. The
Pyrean Ibex was successfully cloned using tissue from the last known available specimen;
however, the newborn passed away from left lung atelectasis soon after delivery. most of
the thoracic cavity [44]. Over many decades, it has been acknowledged that the biggest
obstacle to a cloned embryo’s development is its epigenetic reprogramming, which can
cause problems with implantation, placenta development, and function, as well as obesity,
immunodeficiency, respiratory defects, and early death [45,46]. It has been determined that
the low birth rate is largely due to this epigenetics problem [47].

Cloned animals do not have identical somatic mtDNA copies while sharing the same
nuclear DNA. As a result, they are not exact clones of their somatic cell nucleus ancestors.
Moreover, recipient oocytes are frequently extracted from the ovaries of females who have
been slaughtered, enabling a high-quality positive selection. However, these oocytes have
unknown genetic backgrounds and unknown cytoplasmic maternal lineage. Due to the
variability of certain mtDNA nucleotide sequences, clonal embryos and their progeny
frequently exhibit a high level of mitochondrial genotype heterogeneity if the recipient
nuclei are not derived from the same maternal lineage as the donor nuclei. Using cadaver
somatic cells, the endangered grey wolf has been successfully cloned [48]. In wild goats,
somatic cells were inserted into the oocyte of a local goat [49]. Somatic cell cloning efficiency
is typically extremely low, even though somatic cell nuclear transfer has produced cloned
offspring in a number of mammalian species through intra- or inter-species somatic cell
nuclear transfer. Therefore, further investigation is required to identify the factors govern-
ing SCNT-mediated cloning that might be responsible for enhancing the efficacy of this
contemporary assisted reproductive method. The aim of this study is to clone the Arabian
oryx utilizing in vitro interspecific somatic cell nuclear transfer, which entails inserting
an oryx somatic cell into a domestic cow enucleated egg and comparing it to the in vitro
development of the cow SCNT embryo.

2. Materials and Methods
2.1. Chemicals

Unless otherwise stated, all chemicals, including hormones, came from Sigma Aldrich
Corp., St. Louis, MO, USA.

2.2. Ovaries, Oocyte, and Maturation

From 1 January to 31 August 2022, all cow ovaries were provided by the Riyadh local
slaughterhouse and transported in 0.9% NaCl over a period of 1 to 2 h to the laboratory unit
of Embryonic studies and reproductive physiology at King Saud University. The removal
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of oocytes from the ovarian follicles on the ovary’s roof was carried out using a disposable
syringe with a 10 mL vial and 0.5 mL of handling medium (TCM 199 (Hanks solution, fetal
bovine serum (10%), Gentamycin, Na—Pyruvate from Stock Solution (100 mM) (Caisson
Lab. Inc., Smithfield, UT, USA)). After maturing in the lab for 24 h, cumulus–oocyte complex
(1832) showed uniform cytoplasm and more than three layers of cumulus cells [50].

2.3. Dissect Zona with Micropipettes

After maturation, cumulus-enclosed oocytes were placed in a petri dish with a solution
of the enzyme hyaluronidase (600 IU/2 mL). The cumulus cells were manually extracted
with a glass Pasteur pipette. Only eggs with an extruded first polar body (FPB) were
assessed for zona dissection. By placing the oocyte on the holding pipette with the polar
body orientation at 12 o’clock, the cutting pipette was used to cut a slot or slit in the ZP on
a different region of the oocyte [7,51].

2.4. Oocyte Enucleation

By gently rotating the oocyte with cutting pipettes, a small amount of cytoplasm
that is situated in the plasma membrane is excluded just below the first polar body of
oocytes outside the zona pellucida (Figure 1). By removing the resulting cytoplasm from
the oocyte and preferentially culturing it in TCM-199, to determine the enucleation of the
oocytes. For 30 min, Earle’s salt, 10% FBS, and 10 µg/1 mL Hoechst are combined (Sigma
B2261). Subsequently, ultraviolet (UV) light was used to examine the ooplasm to see if it
had reached the metaphase II stage.
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2.5. Preparation of Fibroblast from Arabian Oryx

Through our previous study [51], the appropriate passage number was identified,
which is used in our current study.

2.6. Nuclear Transfer, Fusion, and Activation

A fibroblast cell from an oryx was injected into the perivitelline space employing polar
body dissection pipettes. To achieve cell fusion immediately following nuclear transfer
(NT) at room temperature, a single alternating current pulse of 0.2 Kv/c for one second
was applied, followed by a single DC pulse of 2.5 Kv/c for fifty seconds. Moreover, the
oocyte was artificially activated by being exposed to 5 M ionomycin right away after it
had been fused. The incubation was carried out in synthetic oviductal fluid (SOF) medium
supplemented with 1 mg/250 BSA for 6 h at 39 ◦C and 5% CO2, 10 µL/mL MEM (50×),
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10 µL/mL MEM (100×), g/mL penicillin-streptomycin, and 2.5 µg/250 µL cycloheximide
on a 35 mm Petri dish with mineral oil.

2.7. In Vitro Culture of iSCNT Embryos

Interspecific SCNT embryos were activated for 6 h before being cultured for 42 h
in SOF medium with 1 mg/250 µL BSA, 10 µL/1 mL MEM (50×), and 10 µL/mL MEM
(100×), µg/2 mL penicillin-streptomycin, in 35 mm Petri dishes with mineral oil. Subse-
quently, the embryos were cultured for 6 h at 39 ◦C with a mixed gas of 90% N2, 5% CO2,
and 5% O2 [7,51].

2.8. Statistical Analysis

The Mine Tab INSTAT software was utilized to record and examine all data. The Chi-
square analysis and sample t-test were employed to examine the cleavage and
blastocyst rates.

3. Results

A total of 1832 oocytes were collected from slurred cow ovaries, including 810 oocytes
from interspecific somatic cell nuclear transfer, 716 oocytes from the cow (SCNT), and
306 from cow IVF. The result of the Oryx reconstructed oocytes compared to cow SCNT,
and cow IVF is shown in Table 1. The results showed that the total no of matured oocytes
with the first polar body (1st PB) oocytes used for both Oryx and cow (SCNT) cloning
(1064/1526 = 69.72%) oocytes. Total enucleated oocytes, (890/1064 = 77.1%), with a total
number of activated oocytes for both Oryx and cow (SCNT) (540/890 = 60.67% oocytes). A
total of 839 embryos were cultured, including 241 embryos for Oryx, 292 embryos for SCNT,
and 306 embryos for IVF. The total cleavage embryo development from the 2-cellsstage
up to the blastula stage (Figure 2) of both Oryx (26.97%) and cow (SCNT) (33.0%) with no
significant differences between them (Table 1). There were some variations between the
different stages of embryo development (from 1-cell up to the morula stage). The 1-cell
stage of Oryx (20.52%) and (26.14%) for cow IVF showed a higher arrest stage than cow
(SCNT) (4.41%), Table 2. The 2-cell stage embryos of the Oryx cloned embryo interspecific
somatic cell nuclear transfer and cow (SCNT) showed a similar rate and their total rate
(29.75%), which showed a higher developmental rate than the IVF rate (12.15%). While
the 4-cells stage of the Oryx showed a higher developmental rate (29.23%) than the cow
(SCNT) (6.54%) and cow IVF (7.48%). In comparison, the developmental rate of the 8-cells
stage of both cloned Oryx and cow (SCNT) embryos’ developmental stage (21.52%) was
higher than that of the cow IVF (7.48%). The 16-cell stage cloned cow embryo showed a
higher rate (19.35%) compared to the Oryx (3.08%) and cow IVF (0%) rates. The rates at
the morula stage of the cloned embryos (15.06%) and IVF (11.21%) are close to each other
and are higher than the Oryx rate (6.15%), Table 2. Finally, the blastocyst developmental
rate of Oryx interspecific rate (9.23%) group 1 showed a close blastocyst development rate
to that of the cow (SCNT) group 2 (8.33%). While the 3rd group, the (IVF) cow embryos,
showed a cleavage rate (42%) of the embryo development stage, with a blastula stage
rate (57%), which is a significantly higher (p < 0.05) higher than the cloned embryo rate
(Tables 1 and 2).
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Table 1. The number of cow oocytes used for cloning Oryx and cow-cleaved embryos of interspecific
somatic cell nuclear transfer, (SCNT) and in vitro fertilization (IVF).

Group
No. of

Oocytes
No, %

With FB
No, %

Without
FB

No, %

No. of Enu-
cleation
No, %

No. of
Activation

No, %

No. of
Culture

Embryo%

Cleavage
Rate %
No, %

Blastocyst
Rate %
No, %

Oryx
interspecific

SCNT

810/1832 =
44.21%

536/810
= 66.17%

274/810 =
33.83%

439/536 =
81.90%

241/439
54.90%

150/241 =
62.24%

65/241 =
26.97% 6/65 = 9.23%

Cow SCNT 716/1832 =
39.09%

528/716
= 73.74%

188/716 =
26.26%

451/528 =
85.41%

299/451 =
66.30%

230/299 =
76% 96 (33%) 8/96 = 8.33%

Cow IVF 306/1832 =
16.7% - - - - 306 130 (42%) 74 (57%)

Percentages of cleavage and blastocysts obtained.
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Table 2. The comparison of the cloned Oryx interspecific somatic cell nuclear transfer, Cow SCNT,
and IVF of cow embryo developmental stages.

Type Oocytes
No.

With FB
No. & %

1 Cell
No. & %

2 Cells
No. & %

4 Cells
No. & %

8 Cells
No. & %

16 Cells
No. & %

Oryx
interspecific

SCNT
810 536/810 =

66.17%
110/536 =

20.52%
21/65 =
32.31% 19/65 = 29.23% 13/65 = 20% 2/65 = 3.08%

Cow SCNT 716 522/716 =
72.91%

23/522 =
4.41%

26/93 =
27.96% 6/93 = 6.45% 21/93 = 22.58% 18/93 = 19.35%

IVF cow 306 - 80/306 =
26.14%

13/107
12.15% 8/107 = 7.48% 8/107 = 7.48% -
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4. Discussion

Although there is a growing desire to use cloning to preserve endangered species,
effective interspecies nuclear transfer has yet to be reported as SCNT within the same
species. Based on the outcomes of this research, cow oocytes enable the development of
Arabian Oryx embryos’ interspecific somatic cell nuclear transfer up until the blastocyst
stage, as stated in our previous paper [51]. Early embryogenesis is a critical stage of embryo
development, and its success depends on the ability of the nucleus and the cytoplasm to
communicate effectively. Since the donor nucleus and the recipient cytoplasm are from
different species in interspecific somatic cell nuclear transfer, the challenge is significantly
more complicated. The majority of the interspecific somatic cell nuclear transfer embryos
were found to stop developing at the recipient cytoplast-specific embryonic genome activa-
tion (EGA) stage [52]. As per the findings of this study, Cow–Oryx interspecific somatic cell
nuclear transfer embryos can progress past the EGA stage, and about 9% of them survived
until the blastocyst stage, which is comparable to the rate in most SCNT studies. This
showed that the cow and Oryx have a healthy nucleus–cytoplasm connection. The results
of our study showed superior results to those obtained in other studies of interspecific
somatic cell nuclear transfer in different animals, such as [25,28,52–57]. Producing animals
by interspecific somatic cell nuclear transfer presents a variety of challenges, including
incompatibility of mitochondrial/genomic DNA, activation of the nucleus’ embryonic
genome by the donor oocyte, the lack of fosters who are appropriate for interspecific so-
matic cell nuclear transfer embryos, and epigenetic disorders and unstable gene expression
formations [58,59]. When compared to interspecies cloning, intraspecies cloning is more
likely to have higher development efficiency the closer the donor cell’s species is to the
recipient oocyte [19]. Cow oocytes have been employed in numerous investigations as
extremely effective recipient cytoplasts for their capacity to reprogram somatic cells. This
is consistent with both our findings and with other species [17,18,20,21,29,60,61]. Since
Multiple Barrier Removal techniques have the potential to eliminate the demand for any
conventional pharmaceutical therapy but may require extra injections, they may hold the
key to the future of SCNT. Once again, blastocyst development or cleavage rate, which are
usually mentioned as success indicators in research, may not be significantly correlated
with the survivability of the embryo during pregnancy. Even though there is a lot of
promising research, their true value can only be gauged by how many healthy offspring
they can produce [62]. One of the factors that has been connected to cloning failure is a
higher rate of oocyte degradation. Given that the majority of the donor cells came from skin
cumulus cells, which are not at the G0 stage, this could be because of the type of somatic
cell employed, or it could be because of the electrical current used to fuse the somatic cell
with the oocytes, which could damage the ova’s cytoplasm. Furthermore, due to the fibrob-
last cell’s prolonged lifespan, in vitro culture may affect the rate of SCNT formation [63].
These findings imply that techniques for restoring extinct or critically endangered species
and populations may involve somatic cell cloning. Even though cloning is not a practical
conservation approach in Saudi Arabia, we are nevertheless hopeful that it will aid in
preserving endangered species in the future.

5. Conclusions

The results of our study indicated that the development of Arabian Oryx interspecific
somatic cell nuclear transfer embryos was supported by cow oocytes up to the blastocyst
stage. This showed that the cow and Oryx have a healthy nucleus–cytoplasm connection.
This gave us a good impression of the ability of cow oocytes as recipient cytoplasts, highly
efficient in their ability to reprogram Oryx somatic cells. Therefore, additional studies are
necessary to ascertain how this affects the interspecific somatic cell nuclear transfer success
rate. Here, a logical conclusion must be derived: for cloning to be more successful, it will be
necessary to have a greater understanding of oocyte physiology—not just as it pertains to
mammalian oocytes, but also as it relates to species-specific specialization and uniqueness.
More study is required, especially on the intricate topic of how different types of injectable
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medications interact with different nucleus–donor cell types. These findings imply that
somatic cell cloning techniques can restore extinct or critically endangered species and
populations. Even though cloning is not a practical conservation approach in Saudi Arabia,
we are nevertheless hopeful that it will one-day aid endangered species.
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