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CHAPTER 1: Systems of Linear Equations and Matrices 
 

1.2 Gaussian Elimination 

 

 

 

 

𝑋 = [

𝑥1

𝑥2

𝑥3

] = [
3
1
2

] ( unique solution) 
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𝐿𝑒𝑡 𝑤 = 𝑡, 𝑧 = 𝑠 ⇒ 𝑦 − 2𝑧 = 0 ⇒ 𝑦 = 2𝑠 

𝑥 − 𝑤 = −1 ⇒ 𝑥 = 𝑡 − 1 

The system has infinitely many solutions: 

𝑋 = [

𝑥
𝑦
𝑧
𝑤

] = [

𝑡 − 1
2𝑠
𝑠
𝑡

] ,      𝑠, 𝑡𝜖ℝ  
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𝑋 = [

𝑥1

𝑥2

𝑥3

] = [
0
0
0

] ( unique solution) 
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𝑧 = 0. 𝐿𝑒𝑡  𝑦 = 𝑠 ⇒ 𝑥 + 𝑦 = 0 ⇒ 𝑥 = −𝑠 

𝑤 − 𝑦 = 0 ⇒ 𝑤 = 𝑠 

The system has infinitely many solutions: 

𝑋 = [

𝑤
𝑥
𝑦
𝑧

] = [

𝑠
−𝑠
𝑠
0

] ,      𝑠𝜖ℝ  
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1.3 Matrices and Matrix Operations 
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Another solution of Dr. Wael Mustafa 

    scan me 
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𝑎 = 4 

3 = 𝑑 − 2𝑐  ……… (1) 

−1 = 𝑑 + 2𝑐  … . … … (2) 

𝑎 + 𝑏 = −2 ⇒ 4 + 𝑏 = −2 ⇒ 𝑏 = −6 

 Multiply Eq (2) by (−1)  ⇒  1 = −𝑑 − 2𝑐  … … … (3) 

Add eq 1 with eq 3 ⇒ 4 = −4𝑐 ⇒ 𝑐 = −1  

In eq 1: 3 = 𝑑 + 2 ⇒ 𝑑 = 1 
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1.4 Inverses; Algebraic Properties of Matrices 

 

 

 

17- 

Let 𝐵 = [
−1 2
4 5

] 
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𝐵−1 =
1

(−1) ∗ 5 − 2 ∗ 4
[

5 −2
−4 −1

] =
1

−13
[

5 −2
−4 −1

] = [

−5

13

2

13
4

13

1

13

] 

𝐴 =
1

2
([

−5

13

2

13
4

13

1

13

] − [
1 0
0 1

]) =
1

2
[

−18

13

2

13
4

13

−12

13

] = [

−9

13

1

13
2

13

−6

13

] 

 

 

 

a- 

 

 

b- 

𝐴−3 = (𝐴3)−1 = (
41 15
30 11

)
−1

 =
1

41 ∗ 11 − 15 ∗ 30
(

11 −15
−30 41

) = 

1

1
(

11 −15
−30 41

) = (
11 −15

−30 41
) 

c- 

𝐴2 − 2𝐴 + 𝐼 = (
11 4
8 3

) − 2 (
3 1
2 1

) + (
1 0
0 1

) = 

(
11 4
8 3

) − (
6 2
4 2

) + (
1 0
0 1

) = 

(
5 2
4 1

) + (
1 0
0 1

) = (
6 2
4 2

) 
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a- 

𝑝(𝐴) = 𝐴 − 2𝐼 = [
3 1
2 1

] − 2 [
1 0
0 1

] = [
3 1
2 1

] − [
2 0
0 2

] = [
1 1
2 −1

] 

b- 

𝑝(𝐴) = 2𝐴2 − 𝐴 + 𝐼 

 

𝑝(𝐴) = 2 [
11 4
8 3

] − [
3 1
2 1

] + [
1 0
0 1

] = [
22 8
16 6

] − [
3 1
2 1

] + [
1 0
0 1

] = 

[
19 7
14 5

] + [
1 0
0 1

] = [
20 7
14 6

] 

c- 

 

𝑝(𝐴) = 𝐴3 − 2𝐴 + 𝐼 = [
41 15
30 11

] − 2 [
3 1
2 1

] + [
1 0
0 1

]

= [
41 15
30 11

] − [
6 2
4 2

] + [
1 0
0 1

] = [
35 13
26 9

] + [
1 0
0 1

]

= [
36 13
26 10

] 
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𝐴 = [
𝑡 𝑠
0 𝑡

] ,   𝑡, 𝑠 𝜖ℝ 
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1.5 Elementary Matrices and a Method for Finding 𝐴−1 

 

 

(a) 
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(b) 
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(a) 
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(b) 
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1.6 More on Linear Systems and Invertible Matrices 
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1.7 Diagonal, Triangular, and Symmetric Matrices 
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Useful links: 

https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&q1=2%602x-y-3z%3d0%3b-x%2b2y-

3z%3d0%3bx%2by%2b4z%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPa

rt 

 

https://onlinemschool.com/math/assistance/equation/gaus/ 

 

https://atozmath.com/LinearEqn_HK.aspx?q=1&m=US 

 

 

 

https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&q1=2%602x-y-3z%3d0%3b-x%2b2y-3z%3d0%3bx%2by%2b4z%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPart
https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&q1=2%602x-y-3z%3d0%3b-x%2b2y-3z%3d0%3bx%2by%2b4z%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPart
https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&q1=2%602x-y-3z%3d0%3b-x%2b2y-3z%3d0%3bx%2by%2b4z%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPart
https://onlinemschool.com/math/assistance/equation/gaus/
https://atozmath.com/LinearEqn_HK.aspx?q=1&m=US


CHAPTER 2: Determinants 

2.1 Determinants by Cofactor Expansion 
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Note: Choosing the second column is faster in calculations 
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Note: Choosing the third column is faster in calculations 
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2.2 Evaluating Determinants by Row Reduction 
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20- 

|
𝑎 𝑏 𝑐
2𝑑 2𝑒 2𝑓

𝑔 + 3𝑎 ℎ + 3𝑏 𝑖 + 3𝑐
|−3𝑅13
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ |

𝑎 𝑏 𝑐
2𝑑 2𝑒 2𝑓
𝑔 ℎ 𝑖

|
1

2
𝑅2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 

2 |
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

| = 2(−6) = −12 
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For question 28, the given matrices are equal without directly 

evaluating the determinants because the second matrix is obtained by 

adding multiples of the first column to the second and third columns 
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2.3 Properties of Determinants; Cramer’s Rule 
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We can find |𝐴| from matrix C directly by the following Def: 
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More details: 
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Useful links: 

https://onlinemschool.com/math/assistance/matrix/determinant/ 

 

https://atozmath.com/matrix.aspx?q=det 

 

 

 

 

 

https://onlinemschool.com/math/assistance/matrix/determinant/
https://atozmath.com/matrix.aspx?q=det
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4.1 Real Vector Spaces 
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4.2 Subspaces 

 

 

 

 

 

Another solution: 
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4.3 Linear Independence 

 

a- 
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b- 

 

𝑟 = 4 , 𝑛 = 3 , 𝑟 > 𝑛 , 

 so by this theorem, these vectors are linearly dependent. 
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vectors are linearly dependent 
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b- 
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4.4 Coordinates and Basis 
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4.5 Dimension 
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The basis is {𝑣1 = (1,0,0), 𝑣2 = (1,0,1)} 
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4.6 Change of Basis 
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4.7 Row Space, Column Space, and Null Space 
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4.8 Rank, Nullity, and the Fundamental Matrix Spaces 
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CHAPTER 6: Inner Product Spaces 

6.1 Inner Products 
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6.2 Angle and Orthogonality in Inner Product Spaces 
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Solution: 

of Dr. Wael Mustafa 

    scan me 
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6.3 Gram–Schmidt Process; QR-Decomposition 
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8.1 General Linear Transformations 
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8.2 Compositions and Inverse Transformations 
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Another proving of " onto " applying the following Theorem: 
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8.4 Matrices for General Linear Transformations 
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8.5 Similarity 
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5.1 Eigenvalues and Eigenvectors 
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5.2 Diagonalization 
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Useful links: 

https://atozmath.com/Menu/MatrixAlgebra.aspx 

 

 

https://atozmath.com/Menu/MatrixAlgebra.aspx

