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CHAPTER 1: Systems of Linear Equations and Matrices

1.2 Gaussian Elimination

In Exercises 5-8, solve the linear system by Gaussian elimi-

nation.
s. X1 + X2 + 2.1'3 = 8
—X] — 2.1'2 -+ 3.1'3 = 1
3.1'] — 7.1'2 -+ 4.1'3 =10
x+y+2z=8— (1)
Converting given equations into matrix form 529 (@)
1 1 2 8
-52z=-104 —
123 1 ®
3 -7 4| 10 Now use back substitution method
From (3)
-52z = - 104
.R'J <_R2_R1 -]_ -I-
- = = :2
- -32
a
L1218 From (2
= 0-15] 9 y+5z=9
3 -7 4| 10 = -y+35(2)=9
= -y+10=9
Ry — R3-3 xR, = -y=9-10
1 1 2 8 = -y=-1
= 0 -1 3 9 =2y=1
0 -10 -2 -14 From (1)
x+y+2z=
Ry — R;-10xR, =x+(1)+22) =8
=x+5=8
I 1 2 3
=x=8-35
= 0 -1 5 9
0 0 -52| -104 =x=3
Solution using back substitution method.
x=3 yv=1and z=2

X =

X1 3
X2| = |1| ( unigue solution)
X3 2




CHAPTER 1: Systems of Linear Equations and Matrices

|
—

7o x— yv+2z— w
2x+ y—2z —2w=-2
—x +2y—4z4+ w=

3x — 3w = —

b —

Rewrite the system in matrix form and solve it by Gaussian Elimination (Gauss-Jordan elimination)

1 -1 2 -1]|-1
2 1 =2 2|2
-1 2 4 111
3 0 0 -3|-3

R, - 2R; — R, (multiply 1 row by 2 and subtract it from 2 row): R3 + 1 R; — R (multiply 1 row by 1 and add it to 3 row): Ry - 3 R; — R, (multiply 1 row by 3 and subtract it from

4 row)
1 -1 2 -1(-1
0 3 6 00
01 2 0|0
0 3 6 0[O0

R; + 1 R; — Ry (multiply 2 row by 1 and add it to 1 row): R3 - 1 R; — R3 (multiply 2 row by 1 and subtract it from 3 row): Ry - 3 Ry — R, (multiply 2 row by 3 and subtract it from
4 row)

10 0 -1]-1
01 -2 0]|0
0:.0 107 50 |0
00 0 0]0

Letw=tz=5s 2y—-2z=0=>y=2s
x—w=-1=x=t-1

The system has infinitely many solutions:

V4

X t—1
x=|Y =[ 255 ] s, teR
w t



CHAPTER 1: Systems of Linear Equations and Matrices

In Exercises 15-22, solve the given linear system by any
method.

15. E.Y] + X2 + 3.1'3 =0
X1 + 2.T2 = 0

X2 + X3 = 0

Selution:
Total Equations are 3

x+y+3z=0—(1)

x+2v+0z=0—(2)

x+y+z=0—(3)
Converting given equations into matrix form 0
2 — -
21300 =z=3 =0
1200
From (2)
oLipo 13y-13z=10
= 15y-15(0) =
Ry+— Ry-05x=R
=15=0
21 3 0
0
=| 015 -151 0 =y=__=0
1.5
o1 1 0
From (1)

x+y+3z=20

= 2x+(0)+3(0) = 0

21 3|0 ~ =0
= 0 15 -15] 0 0
o0 2|0 =x=5=0

Solution using back substitution method.
ie x=0,y=0and z=0

x+y+3z=0—(1
15v-152=0—(2)

22=0—1(3)

Mow use back substitution method

From (3)
2z=0

X =

X1 0
X2 | = 0] (unique solution)
X3 0




CHAPTER 1: Systems of Linear Equations and Matrices

19. 2x + 2y + 4z

=

|
-

|
b
M
I

-0 o O

2w+3x+ v+ z
—2w+ x + 3y — 22

[0 2 2 40}
10 -1 3|0
2 3 1 1]0 ‘

b2 1 3 20

[1 0 -1 3]0}
002 2 4|0
203 1 10‘
V21 3 2|0/

[1 0 -1 3|0}
02 2 4]0
03 3 7|0
lo1 1 8|0

f1 0 -1 3|0}
011 2|0
03 3 7]0
lo1 1 8|0/

[1 0 1 -3 |0
011 2|0
‘ooo 1 o‘
loo o -10]|0]/

Ry =3 Ry — R (multiply 3 row by 3 and add 1t to 1 row); R; - 2 R3 — Ry (multiply 3 row by 2 and subtract it from 2 row); Ry + 10 Ry — Ry (multiply 3 row by 10 and add it to 4 row)

=
=

Do @ o
o o 9 o

z=0lety=s 2x+y=0=>x=-s5
w—y=0>=>w=s

The system has infinitely many solutions:

w s
X=;C,=_SS, seR
z 0

THEOREM 1.2.1 Free Variable Theorem for Homogeneous Systems

If a homogeneous linear system has n unknowns, and if the reduced row echelon form
of its augmented matrix has r nonzero rows, then the system has n — r free variables.
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In Exercises 25-26, determine the values of a for which the
system has no solutions, exactly one solution, or infinitely many

solutions.
25. x+ 2y — 3z = 4
3x — y+ o= 2
4x+ y+ @ —14)z=a+2
8. For Jhat al valees Bl e ihihindi
A,{g {e Siyshenn Uare ; .
ote Sol, iMFudely mesalfj ) o PR iy
b Slutious .
o pe sels. g}.mﬂ? gy Coln# 7O w1
oz q,
X "'Zy’ 2z < 4 aing: Colabepm for wht Jalerel
g + Y (A -DZ =042
- p q
(A -3 4 (I =2 Lo
3 -l s . ro o | -2 x>
4 1 (at-l4) ak o o (a-4)(atd) -4
~3R, +R2 = Ra i om0 [becane et
| 3 a I} o = i_q ':‘ He ._xq, h e
t h - -lo = Ce ﬂ(“< Sor e "1"‘-"! N “‘:
g =% | atl +4 - e 0 fug tard kst cortd
g | Lol ( 4= e ity b
_yg +R3 2R3 ') =« (x-4)(a+t) —‘95 L e
; 4 ol _ e (-9
:» '? l‘% 't:_r() ( @—ﬁ)@‘t? (=9 s {?‘u; h
o 3 -1+ (o * -¢7 ard = ( Cesac?
 -o BT
- ; -; lf‘% _‘L(c (\)(Q) < 5'(‘ V'IS_(_@/;—‘;)Q(@S\_:?/V/
Vg e el 1%i FTIe Setiatins ™|
R, +R = B3 T -
Rlz -33 ) {Lmy only oue =3, go
[l-:} 4 - fhee 3 ekscfy(Shre
MR Sot] 5 oo
I
-7k
+ W= Symtmar, ¢
- _2 (i
o | - ¥ Ii a=39, iguky vy gol
o o (w-dary) «w-q 5 w2 P —
wey b s O when o g

L/"—“ Is @ =-3, onesdly cue 5y

25, No solutions when a = —4;
infinitely many solutions when a = 4;
one solution for all valuesa £ —4 anda £ 4



CHAPTER 1: Systems of Linear Equations and Matrices

In Exercises 27-28, what condition, if any, must a, b, and ¢
satisfy for the linear system to be consistent?

27. x+3y— z=a
x+ y+2z=
2y —3z=c

the matrix form of the above system is,

[ —1 cfl
the Augmented matrixis, 11 1 2 | b

we convert it into row echelon form,

Rg—}Rg—Rlﬂ' —2 3 b—a

|'1 3 -1 a ]
Rs —Ra+Roi0 —2 3 b—a

|_'D 0 0 |et+b— aJ
this is in row echelon form.

we have this system is consistentife +b —a =0
= c=a — b.

hence the given system is consistent for any value of a and b and forc = a — b.

Explanation:

to find consistency of the given system we convert the system into row echelon form.
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31. Find two different row echelon forms of

: )

This exercise shows that a matrix can have multiple row eche-
lon forms.

Answer:

1 3 1 0

and are possible answers.

0 1 0 1

matrix that i1s in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form 1s of necessity in row echelon form, but not
conversely.)
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32. Reduce
2 1 3
0o —2 -29
3 4 5

to reduced row echelon form without introducing fractions at
any intermediate stage.

For finding the reduced row echelon form we have to perform row operation

Multiply each element of Ry by % tomake theentryatl,1a L

13 3
0 -2 29
3 4 5

Perform the row operation Rz = Ry — 3R, to make the entry at 3,12 0.

1 3 3
0 -2 29
0 3 3

Multiply each element of Ry by —% to make the entryat 2,22 1.

1 3
1 3 3

F-
01 Z
3 1
0 3 3

Perform the row operation Ry = Ry — R, to make the entry 3t 3,23 0.

Multiply each element of Ry by —1+3 to make the entry at 3,32 1.
r 3
1 3 3
20
01 2
0 0 1

Perform the row operation Ra = Ra — %R:; to make the entry at 2,3 2 0.

r 1 3
1 3 3
01 0
00 1

Perform the row operation R = Ry — %Rg to make theentryat 1,32 0.

0
0
1

=T ]

[1

0
10
Perform the row operation Ry = Ry — %Rg to make the entryat 1,2 a 0.
1 0 0

010
00 1
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37. Find the coefficients a, b, ¢, and d so that the curve shown
in the accompanying figure is the graph of the equation
y=ax’+bx*+cx +d.

¥

2 \-‘/ B >
(3,-11)

20 (4,-14)
< Fiqure Ex-37

Observe that, the equation is y = ax® 4 bx® + cx + d and it passes through the points (0,10), (1,7), (3, —11), (4, —14)
Substitute (0, 10) on the above eqguation.

10 = a(0)* + b(0)* + ¢(0) +d
d=10

By substituting d = 10 on the equation y = ax® + bx®> + cx + d gives y = ax® + bx? + ex + 10

Substitute (1, 7) on the equation y = ax® 4+ bx® + ex 4 10

7= (1P +b(1)]* 4+ c(1) + 10
atb+c 3

Substitute (3, —11) on the eguation y = ax® + bx® + cx + 10

—11=27a+4+9b 4+ 3c+ 10
9a+3b+c=-7

Substitute (4, —14) on the equation y = ax® + bx® + cx + 10

~14=(4)’a+ (4)’b + 4c + 10
16a+4db+c=—6

Subtract the above resulting first two equationanditgives 8a+2b= —4,4da+ b= -2
Subtract the above resulting next two equation and itgivesTa+b =1

Substract the equations4a +b = —2 and Ta+ b = 1 gives the value whichisa =1.
By substitutinga=1onda+b = —2givesb = —6._

By substituting a = 1, b = —6 on any one of the equations gives, ¢ = 2.
Therefore.a = 1.b= —6.c =2
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1.3 Matrices and Matrix Operations

In Exercises 3-6, use the following matrices to compute the
indicated expression if it is defined.

3 0 -
[4 —1 [1 4 2}
A=|-1 2], B = s L = ,
0 2 3 1 5
I 1 .
1 5 2 6 1 3
D=|-1 0 1|, E=|=1 1 2
3 2 4 L 4 1 3
3.(a) D+ E (b) D—E (c) 5A
(d) —7C () 2B — C (f) 4E — 2D
(&) =3(D+2E) (h)A—A (i) tr(D)
(j) tr(D — 3E) (k) 4 tr(7B) (1) tr(A)
T L 6 { 7
V) Dx E = ‘ ¢
o \ \ -+ [ L <
> RS
S 6 5
— 2 / 2
T 2 7
c G { 23
5 =
'L’) D-E = ; ~ |- { 2
ey Qnst
Y t 3
L ase
e ’r C” -'
- -4 =
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= g2 © I£ O
<) 3 ~ e e
t ' 5 '3

-1y

.19
<[ Y 2 1 ]
J) '1C — . < = -2 _7 -3y
3 ;

aeil
ot
W Sy ase ¥ B RSl ; I
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(¥ YR | 3 B
= 12 -6 >3
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r3(0* Zg: -3 '% 4 F
-3 2 v
t Y o

9 =1 =¥

5 o °
o 0
6 o
! & 2
A (o)

"
1
c
~

e
*’_\D 3

I’

Son, d clja\?ou,o.D elw

(+o+y = &
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J') D- 3£ = Ny [ ' 3
-l © - 2 - "\ 2
3 2 Y " ' 2
= -1 2 -1
S S
-1 -1 -5
~3 2 =7
b(036) « Kae & [, _;
-9 LY
- "7 ,3,_ (
4 o-3e) = T3
R =
)  qa- '7[“ "] =
- o 2 0 L
4 I (re) y L))
Ry 25 -7
(53
:"((194-1\,)
S Q[:g"‘_j
= by :
uvA):‘v\C
i) ﬁ&l (a) = ae & ’\',] ne P
;.l— :V’ ne)_ SiUOAQ !

be caud

( 7 6 5"| [75 4
@ l|—-2 1 3 ml o —
7

3 ',"J |_71 1 IJ

22

—6 8 -39
(e) Undefined ) | -2 4 6 (2) 9
10 0 4 —33

(5 () =25 (k)168 (1) Undefined

HEN [ ol ol

—14
=35

—21
—6
—12

—24 0 0
-15| mfo o
—30 0 0
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In Exercises 3-6, use the following matrices to compute the
indicated expression if it is defined.

3

0

[4 —1] [1 4 2}
A=|-1 2], B = s C = ,
0o 2 31 5
1 1 -
1 5 2 6 1 3
D=|-1 0 1], E=|-1 1 2
3 2 4 | 4 1 3
5. (a) AB (b) BA (¢) BE)D
(d) (AB)C (e) A(BC) (f)y ccT
(g) (DAY (h) (C'B)AT (i) w(DDT)
(j) tr(dET — D) (k) tr(CTAT +2ET) (1) tr((ECT)TA)

(a) Multiplying the matrices A and B , then

3 0
4 -1
AB= |1 2[ ]
0 2

11

(12 -3
—|-4 5 (1)

4

(b) Since Bisa 2 x 2 matrix and A is a 3 x 2 matrix, matrix multiplication is not possible.

Thus BA is undefined.
(c) First multiply the scalar 3 with the matrix E and then Multiplying the matrices 3E and D,

18 3 9][1 5 2]
(BE)D=1-3 3 6/1-1 0 1
(12 3 9J|_3 2 4J

[42 108 75

— (12 -3 21

36 78 63
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(d) Using (1) , and Multiplying the matrices AB and C,

ABC— |1 ] L

3 15
(3 45 9‘|
=111 —11 17
717 13J

(e) First multiply the matrices B and C and then Multiply the matrices A and BC

am0)— |1 2] -

1 6 2 10
(3 45 9

= |11 -—-11 17
7 17 13

(f) Multiplying the matrices C and CT,

i 1
CCT—1424

13 1 5
- 2

=) B L

21 17
- |17 35

(g) Multiplying the matrices D and A , and taking transpose,

[0 12]
DA=1-2 1
(11 SJ

(DA)T — 0 —2 11]

12 1 8
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(h) First multiply the matrices CT and B and then Multiply the matrices CTB and AT,

A IC I
(CTB)AT = |16 —2 { }
0 2 1
|8 8
12 6 9]
= 148 —20 14
24 8 16J

(i) Multiplying the matrices D and DT,
30 1 21

DD =1 2 1
21 1 29

Then tr(DDT) = 30 + 6 + 29 implies tr(DDT) = 61 .

(j) Subtracting the matrices 4ET and D,

[23 9 14]
AET-D=15 4 3

|_968J

tr(4ET — D) = 23 + 4 + 8 implies tr(dET — D) = 35.
(k) Multiply CT and AT and add the matrices CTAT with 2ET ,

15 3 12
CTAT +9ET = |14 0 7
12 12 13

Thus tr(CTAT + 2ET) = 15 + 0 + 13 tr(CTAT + 2ET) — 28
(1) Multiplying the matrices (EOT)T and A,

(ECT)"A = [55 28]

122 44

Thus tr( (ECT TA — 55 + 44 implies tr( (ECT TA =99,
((ecT)
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To find the required answer, first we have to find CcT,

1 4 2
Here C =
3 1 5
T
Therefore CT= 142
3 1 5
1 3
= CT= 4 1
2 5

|’6 1 3] |’1 3‘|
Now, ECT=1-1 1 2! x14 1
1 3]

1 2 5]

Multiplying row of the first matrix vs column of the second matrix.
16 34]

Therefore ECT = |7 8
14 28]
16 34
Now (ECT)" = |7 8

14 28
16 7 14}

T

. T _
= (ECY) _{34 8 28

3 0
}x -1 2

1 1

16 7 14
Now (ECT)"A =
34 8 28

T, [55 28
—f(EC]A—[lm 44}.

Explanation:
We know that The trace of a square matrix is the sum of the elements on its main diagonal (the diagonal that runs from the top
left to the bottom right of the matrix) .
T
Now in this case, tr( (ECT)TA) = 55 + 44 — 99

12 —3 [42 108 ?5‘| [ 3 45 9"| { 3 45 9'|
5.(a) | -4 5 (b) Undefined (¢) |12 =3 21 @ 11 =11 17 e 11 =11 17
4 1 3 78 63 7 17 13 717 13

21 12 6 9

® | 7 0 -2 1l h) |48 =20 14 i) 61 i) 35 k) 28 1) 99
Dol @1 T gl M6l @35 W28 (O
24 g 16
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In Exercises 15-16, find all values of k., if any, that satisfy the
equation.

11 o] [«
15. [k 1 1]t 0 2[|1]|=0
0 2 =31

Multiply first two matrices,

In this case, the first matrixis 1 x 3 and the second matrixis 3 x 3.

Multiply each row in the first matrix by each column in the second matrix.
x1+1x1+1x0 kEx1+1x0+1x2 kx0+1x2+1x—3

Simplify each element of the matrix by multiplying out all the expressions.
k+1 k+2 —I1]
Now we have -

k
k+1 k+2 -—1]|1{ =0
1

Multiply each row in the first matrix by each column in the second matrix.
(k+1)k+(k+2)x1-1x1]=0

Simplify each element of the matrix by multiplying out all the expressions.
k*+2k+1] =0

Now

k24+2k+1=0
(k+1)* =0
(k+1) =

— -1

Another solution of Dr. Wael Mustafa

scan me
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In Exercises 23-24, solve the matrix equation for a, b, c,

and d.

a 3 4 d — 2c
23. —
— 1 a b d 4+ 2¢ —

a=4
=d—2cC ... (1)
—1=d+2¢ i (2)
at+b=-2=>4+b=-2>b=-6
Multiply Eq (2) by (1) = 1 =—-d — 2¢ ......... 3)

Addeglwitheq3=4=—-4c =>c=-1
Ineql:3=d+2 =>d=1
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1.4 Inverses; Algebraic Properties of Matrices

In Exercises 15-18, use the given information to find A.

_ -3 7
15. (7A) l:[ 1 _7}

17. (I +24)""' = [_ 2}

15) given that,

(7a)1 — {—3 7] A {—3 7]—‘

1 -2 1 -2
Naow, let,
-3 7 3 7
B:{l 2] and det(B)z‘ 2‘=(—3)(—2)—7=6—7=—1

Explanation:

We know that inverse of a matrix A = adj(A)/det(A) and adj(A)= transpose of the cofactor matrix of A.

:

So,

R e o I I

2
B“:?A:F 7};\-}\‘: ! 1]
1 3 7 %
17-
LetB=[_41 g
(I+24)"' =B
I+24=B"
2A=B"' -1

A:%(B‘l—f).
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-5 2
1 13 E]

B = (1)*5—2*4[ 4 —1] —13[ 4 —1]

4 1
13 13

-5 2 -9 1

A=t |13 13 _[1 0 1 13 13
2\ |4 1| lo 1 2| 4 —12 —6
13 13 13 13

In Exercises 19-20, compute the following using the given ma-
trix A.

(a) A° (by A™3 (c) A2 —2A+1
3 1
19. A =
2 1
a-
310 (3 1) [ 11 4|
AT=A-A=| 1 1 | 1= s .|
3 [ 3 1) (11 4| _[ 41 15|
i_‘i'i_l. 2 1 .H. $ 3 .|_|. 30 11 .|
b_
Z3_ paaae1 (41 15\7F _ 1 11 =15\ _
= (4 _(30 11) _41*11—15*30(—30 41)_

1 _ _
I(—1310 4115):(—1310 4115)

C_

w—zavi=(y 3)-2( )+ 1)+
(6 3)-G 2+ V=

G D+6 D=0 2
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In Exercises 21-22, compute p(A) for the given matrix A and
the following polynomials.
(a) p(x)=x —2
(b) p(x) =2x> —x +1
() p(x) =x3 =2x +1

3 1
21. A = ) 1

a-
rn=a-2=[; 4] =2l 3=l il-lo 2l=[z il
b-

p(A) = 242 —A+1

1| _( 11 4|

3
2 1] | 8 3|

Al=A-A=| : '|-|'
| 1 ' |

w2l -6 1+l =B Y- 1l U-

e sl *lo al=[is o
.

[ I

1) (11 4 _[ 41 15}
] = |

|3
2 1 8 3/ {30 1 |

Af=a-a’=|

e =#—2a+1 =55 gyl =2, 4] +[p

=0 ul-ls 2+l W=l S1+[o 1
36 13

~ 126 101
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In Exercises 23-24, let

a b 0 1
A= . B =
c d 0 0

23. Find all values of @, b, ¢, and d (if any) for which the matrices
A and B commute.

First, recall that matrices A and B commute if

AB = BA
So let’s find the products BA and AB.

(a D)0 1] 0 a
AB = c d|[0 0] |0 c
[0 1][a b] (¢ d]
BA=10 o/le a7 |0 0

Setting corresponding entries equal, we get the following equations

c=10
d

0=0

c=

So, in order for matrices A and B to commute we must have

a=d, ¢=10

)
Note that b can be any real number. We can write all possible values of
a,b,c,d as parametric equations. Put b = s and d = t. Then the set of
possible values for a, b, ¢, d is given by parametric equations

c=0,d=t

3

A= [6 “z], t,s eR
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33. (a) Show that if a square matrix A satisfies the equation
A2 4+ 2A + I = 0. then A must be invertible. What is the
inverse?

(b) Show thatif p(x) isa polynomial with a nonzero constant
term, and if A is a square matrix for which p(A) = 0, then
A 1s invertible.

a) If A2 +24+ 1 =0 then

J=—A%_24
I=A(-A-2I

Hence, A is invertible and A1

—-A-21

b)
pld] =10
an A" +a, 1AV et agA+agl =0

Divide both sides by ag # 0:

EAH (n—1 A”_I 4+ 4+ ﬂ_‘ﬂ + =0
I:h]. I:h]. ﬂ.}
_EAH (n—1 Are—l i 'I_I _
iy ag iy
A _EAH—I i Opn—1 A”_:‘ i 'I_I _
(1) ] ]
Thus A 1s invertible and:
A_I — EA” 1 (n—1 Ara—:‘ i 'I_I
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1.5 Elementary Matrices and a Method for Finding A™!

In Exercises 9-10, first use Theorem 1.4.5 and then use the
inversion algorithm to find A™!, if it exists.

10. (a) A =3 (b) A 6 4
AT 6 I

(a)

Adjoin the identity matrix onto the right of the original matrix, so that vou have A on the left side and the identity matrix on the right side. It will look like this:

1 0|
|

0 1 |

[1 -5

| 3 -16

Now find the inverse matrix. Using elementary row operations to transform the left side of the resulting matnix to the identity matrix.

R; - 3 Ry — Ry (multiply 1 row by 3 and subtract it from 2 row)

1 ol

31 |

[1 5

| 0 -1

Ry /-1 — R; (divide the 2 row by -1)

Ry =35 R; — Ry (multiply 2 row by 5 and add 1t to 1 row)

|"' 1 0|16 5 |
L0 1|3 |
Answer:

[ 16 -5 |
Al=
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(b)

MNow finding inverse of the given matrix
§ 4 10

-3 -2 01

._.
ad |
| —

‘?: ":_R:_j }C_.?._

| o=

tad | e

Fa | —

The matrix 15 not invertible.
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In Exercises 11-12, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

11 2 11 2
5 3 5 5 5 3
. 1 1 | 2 3 3
12.() 15 5 1 ®1s -5 —%
1 s LJ 1 _a LJ
3 3 10 5 5 10

(a)

Adjoin the identity matrix onto the right of the original matrix, so that you have A on the left side and the identity matrix on the right side. It will lock like this:

f 2 \
[L L 21100
s T
1 1 1
- - — |0 1 0
5 3 10
12 1o 0 1|
V3 3 10 !

Now find the inverse matrix. Using elementary row operations to transform the left side of the resulting matrix to the identity matrix.

1 1
Ry 3~ R (divide the 1 row by E}

[ 500

—_

010

— Ll

|
Ln] A Ao e
— — |
c:l = c:l Lol 5

00 1 |

Ll

Ll —

1 1
R — Ry (multiply 1 row by 3 and subtract it from 2 row); B3 - = R — R (multiply 1 row by 3 and subtract it from 3 row)

Ll —

[=]
=

[ I ST

Ry + R (interchange the 2 and 3 rows)

f1 1 2|5 0 0}
01i101
1
00 |11 0|

|
—

|
[

—

(=1}
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E; - 1F; — By (multiply 2 row by 1 and subtract it from 1 row)

L ] =] LY

(=]}

1

—
=]
i

] e ] laa

R

(3] e
L

e

—t

(S

[

[S]

bed = lad

]

| T W

1
— R (divide the 3 row by E}

— B (multiply 3 row by

[ ] ]

and add it to 1 row); By +

1

?
A

1
B3 — B, (multiply 3 row by - and add it to 2 row)

Fe
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(b)

Adjoin the identity matrix onto the right of the original matrix, zo that you have A on the left side and the identity matrix on the right side. It will lock like this:

i
|

—
(=]

il
[ - - —|1 00
5 5 5

M 3 3

23 3lo1o
5 5 5

1 4 1
I—.'T—DGII
V3 5 10 J

Now find the inverse matrix. Using elementary row operations to transform the left side of the resulting matrix to the 1dentity matrix.

1 1
Ry /5 — Ry (divide the 1 row by <)
1 1 2|5 0 0)
1 3 3
= 'i = 010
3 J 3
1 4 1
L Z 2 oo 1
Vo3 31 /
21 . 2 ) 1 . 1 . -
R; - — Ry — R (muitiply 1 row by 5 and subtract it from 2 row); Rz - £ By — Rz (moltiply 1 row by 3 and subtract it from 3 row)
f1 1 2|35 0 0}
4 30
0 -Z |21 0
B J
| 0 -1 ; -1001

24 24
Ry 5 R (divide the 2 row by -?}

f11 2|5 o o)
1335 s
01 2|2 2 oo
T | T =
1
o1 |1 o 1|

Rj - 1Ry — R, (multiply 2 row by 1 and subtract it from 1 row); Ry + 1 Ry — R (mulhply 2 row by 1 and add it to 3 row)

[10 22 2 o]
T | T
01 BP0
5 |T H
9 |27 s
oo 2|2 -2 1|
\ T T |
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o 9
B3 3 B; (divide the 3 row by _E}

10 2|2 2 o
8 | 8 4
o1 2|2 2 o
g | &8 24
< o
oo 1|3 ; ,
3 3 13 13
By §R3—>R1 {multiply 3 row b‘_l.'%andadd ittDlID\‘.':I;RE—EJR3—*Rg (multiply 3 row h}’?aﬂd add it to 2 row)
/ 1 3 1
| 1 0 Q- — -_- |
2 18 3
1 3 13
01 o0|-- - -—
2 4 9
5 2
| 0 0 1(-3 — -- |
\ 2-'| g !
Answer:
(L2
2 18 3
1 5 13
-1 - - -
il A
5 g
S
V@ s
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In Exercises 13-18, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

0

s

16. 18.

-
O 9

— e— e —
sd

0
0
5
5

- o o o
o © = o
|

s

—
N
|
LS T s B

16-

Adjoin the identity matrix onto the right of the original matrix, so that you have A on the left side and the identity matrix on the right side. It will look like this:

f1 0001t 00o0])
13000100
135 0/0010
V1357000 1]

Now find the inverse matrix. Using elementary row operations to transform the left side of the resulting matrix to the identity matrix.

By - 1B} — Ry (multiply | row by 1 and subtract it from 2 row); B3 - 1 R} — Ry (multiply 1 row by 1 and subtract it from 3 row); By - 1 By — By (multiply 1 row by 1 and subtract it from 4 row)

[t

{10001 000}
03 001100
03 50[(101°0
Vo35 7|-100 1]

Ry /3 — R, (divide the 2 row by 3)

f1000|1 000}
o1oc-iioc-
3 50[/-1 010
o3 5 71 001/

\ I

R3- 3By — Rj (multiply 2 row by 3 and subtract it from 3 row); By - 3 Ry — Ry (multiply 2 row by 3 and subtract it from 4 row)

f1 0001 000}
0100-ii00
33
50[(0 -110
\ 5 7(0 -1 0 1

firo000/1 0 0 0}
oroo| L oo
33

1 0[0o 02 02 0
\ 05 7/0 -1 0 1]
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R4 - 3 Ry — Ry (multiply 3 row by 3 and subtract 1t from 4 row)

i

[1 0001 0 0 0}
11

01 00[(-2 - 0 0
B

01 0[0 -02 02 0

Vo 00 7l0 0 -1 1]

Ry /7 — Ry (divide the 4 row by 7)

[1 0001 0 o0 0}
ﬂlDD-iiﬁﬁ
3003
001 0|0 -02 02 0
,IDGDIDD-ii_I,

Answer:
(1 0 o0 0}
5 g 00
A= 0 02 02 0
o o 1L
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Adjoin the identity matrix onto the right of the oniginal matrix, 30 that you have A on the left side and the identity matrix on the right side. It will look like this:
{o 2 0100 0}

1 00 10100

0 -1 3 0(0010
l2 15 3(0001)]

Now find the inverse matrix. Using elementary row operations to transform the left side of the resulting matrix to the identity matrix.

R} ++ R, (interchange the 1 and 2 rows)

i

{1 0 0 1|01 0 0}
0 a0 2 01 000
0 -1 3 0(0 010
V215 3{0o00 1]
Ry -2 R) — Ry (multiply 1 row by 2 and subtract it from 4 row)
f1 00 1]0 1 0 0}
o0 2 0|1 0 00
0 -1 3 00 0 1 0
Vo 1 5 5(0 20 1

Ry /-1 — R (divide the 2 row by -1)

[=]

i
43

0
1
0
1

LI S I

L I e

i
n

0
0
1
0

o O =

\
%]

0
-1
0
0

oo

-

Ry - 1By — By (multiply 2 row by 1 and subtract it from 4 row)

{100 1|01 0 0]
01 3 000 10
‘00201000
\o o0 8 5(0 21 1]
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Ry + 3 By — R, (multiply 3 row by 3 and add it to 2 row); Ry - 8 B3 — B4 (multiply 3 row by 8 and subtract it from 4 row)

k!

[1 o0 1|0 1 0 0}
010 015 0 -1 0
‘00100_5000
V0 0 0 5[4 2 1 1]

L} ¥

[1t001|0 1 o o |
01 00|15 0 -1 0
‘ODIGD.SOGG‘
\0 0 0 1|08 04 -02 -02 |

R; - 1 By — R (multiply 4 row by 1 and subtract it from 1 row)

0.5
\ 08 04 -02 02 |

[1 00 0|08 06 02 02|
010015 0 -1 0
001 005

\o 0o 0 1|08 04 02 02/

Answer:

[ 08 06 02 02 )
‘ 15 0 -1 0 ‘
Al=
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In Exercises 27-28, show that the matrices A and B are row
equivalent by finding a sequence of elementary row operations
that produces B from A, and then use that result to find a matrix
C such that CA = B.

[2 ] 0"‘ [6 9 4"‘
ZS.A:L—I ] 0l, B=|l-=5 =1 0

3 0 —1J L—l -2 -1

fpplying row operations of matrix A to obtain B,

2 1 0 [1 0 0
[—1 1 ﬂ} (R,=Ry—2Ry) = [0 1 n]
3 0 -1 0 0 1
[2 1 0] 1 0 0
5 -1 0|=1]-2 1 0| ( R3—2Ry)
(3 0o -1/ [o o 1]
[ 2 07 [1 0 0
5 -1 0|=]0 1 0| (R =R;—4Ry)
-1 -2 -1 [-2 0o 1]
[6 9 47 [1 0 —4]
5 -1 0| =
-1 -2 -1 [0 0o 1]

This means that the matrix B can be written as:

B = Eg. (Ez. (E1.A))

= E3.Ea.Ep. A
Mow,
CA=B
C = E.E..E,

1 0 —4][1 o0 0] [1 0 0
—fo1 oflo 1 o0f.{-2 1 0
oo 1]|-20 1] [o o 1

(9 0 4|1
=010{—21]
-2 0 1[0
[9 0 —4
=121 0
0
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1.6 More on Linear Systems and Invertible Matrices

In Exercises 1-8, solve the system by inverting the coefficient
matrix and using Theorem 1.6.2.

3. xi+3n+x= 4

2x; 4 2x + xy = —1

2x; + 30 +x3= 3

3 Given - XS e el
2430, G 2 g b e ety

e SR S el

whele A= /\ piWtioets 'I e
27 : /Q
oA

3
R= Y
!
3

D AX =R
: ; ‘ ¥
= P re- /W\,«,JLHPKKJ hoXh Adolen Bta A

& L{,,—:EQ ( A'A = nﬁf':l)

Now, A= B
o S )
205

e S element e‘( A\ﬂ‘ Jtow owol ,i+h colwrn

c(( A.

Cc».{’acfoﬁn e{ eloment Ou"\'

[e{t on o(deﬁ’ma AT row &

e A4 '1‘ Hetervmimont 0{ Ab~ ol i x
{ /J% CCL’«UW\/V\_
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Mot x ei Co- foctots = ThE
OFiE e

Ak A Ay

j/‘“coms[)er 6{[7 Co~{ocﬁm ot e ,
/W\C.CUI\X b 2 [
O BT

Anal olets (A = R 2
ol S ot
2

= (23 <3 (o) 4 4 (¢~u)

= = A Oe
:
Fi_l = Co{acfo/“c roct 14 X J(W\APOAQ
= i
olet: (A)
=r AR o )
= |
2 2. e
—
X = X = [—\AB = = o | Y
Xy QAR S} [ﬂ Sand
Xy L e 3 i
-3
—_—
% X = -1 ) ARG el g
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In Exercises 1317, determine conditions on the b;’s, if any, in
order to guarantee that the linear system is consistent.

15. X1 —21'2 +5x3:b]
4.1'[ —SIQ +81'3:b3
—3.1'[ —|—3I2 —313:b3

Convert to matrix form:

1 -2 5 b
4 -5 8 b
-3 3 -3 by

Now we need to achieve row echelon form by performing row operations:
» Row operation —4R; + Ry and 3R; + R3

1 -2 5 by
0 3 12 —4b +b
0 -3 12 3b+bs

» Row operation Rz + H3

1 -2 5 by
0 3 -12 —4by 4 by
0 0 0 —b+b+bs

In order for this matrix system to be consistent, we must have a solution. This onlv oceurs if we do

not have any rows that are like this:

[0 0 0 non-zero number ]
because 0x; + Ox2 + Ox3 # non-zero number for any &1, T2, T3.
Therefore, from row 3 of the row echelon matrix above, we must have

—b1 + b2+ b3 =0.
Thus, the values of by, by, b3 must satisfv the condition of

by = by +bs



CHAPTER 1: Systems of Linear Equations and Matrices

16. X1 — 2.1'1 — X3 = bl
—4).’1 + SIE + 2.1:3 = bz
—4,1’1 + ?Ig + 4.1'3 = b3

16) given the system of equations are
0, — 2X9 — Xg = by

—4x;, + 5x5 + 2x3 = bo

—A4x; + Tx9 + 4x3 = ba

1 -2 —1|bh
The Argumented matrix form | —4 5 2 | by
—4 T 4 | by

Apply row reduction enchelon form
Ro =Ro+4R; and R3=R3+4R;
|'1 -2 -1 by '|
~ 10 =3 =2 b+4h
|ﬁ -1 0 | ba+ 4b1J
Rz = 3Rz — R»
1 -2 -1 by
0 -3 -3 by + 4b,
0 0 2 | 3bg+ 8by — b
In the above matrix, the system is consistent. Hence the system has a solution for all values of by, be, and ba.
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1.7 Diagonal, Triangular, and Symmetric Matrices

In Exercises 7-10, find A%, A=2, and A% (where k is any inte-
ger) by inspection.

"o o]
9.A=10 L1 o0
0o 0 !
. ]
5 0 0
1
A=|0 + 0
0 0
i )
+ 0 0
2 1
A=1f0 5 0
0 0 5.
4 0 0
A2=10 9 o0
0 0 16
R )
(2) 0 0
-k _ 1\ —k
A= 0 (E) 0
| 0 o (H"
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In Exercises 13-14, compute the indicated quantity.

39
1 0

0 -1

13.

Consider the matrix,

o

Apply the diagonal property on the given matrix and rewrite the matrix as,
[I[] —1] S lo (-1)*

1 o0
0 -1

Explanation:

Property of diagonal matrix,

d 0
FA=| - is a diagonal matrix, then A",
dy 01" [df; 0 | _
= , where n is any integer.
0 dao 0 di

Exponential property,
(_1)nddafmber — 1
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Useful links:

https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&0g1=2%602x-y-32%3d0%3b-x%2b2y-
32%3d0%3bx%2by%2b42%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPa
rt

https://onlinemschool.com/math/assistance/equation/gaus/

https://atozmath.com/LinearEqn HK.aspx?q=1&m=US



https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&q1=2%602x-y-3z%3d0%3b-x%2b2y-3z%3d0%3bx%2by%2b4z%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPart
https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&q1=2%602x-y-3z%3d0%3b-x%2b2y-3z%3d0%3bx%2by%2b4z%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPart
https://atozmath.com/CONM/GaussEli.aspx?q=GEBS2&q1=2%602x-y-3z%3d0%3b-x%2b2y-3z%3d0%3bx%2by%2b4z%3d0%60GEBS2%60%601.25%60false&dm=D&dp=4&do=1#PrevPart
https://onlinemschool.com/math/assistance/equation/gaus/
https://atozmath.com/LinearEqn_HK.aspx?q=1&m=US

CHAPTER 2: Determinants

- In Exercises 5-8, evaluate the determinant of the given matrix.
If the matrix is invertible, use Equation (2) to find its inverse.

o I Y N Y e S P
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In Exercises 9-14, use the arrow technique to evaluate the de-
terminant.

2 1 4
.| 3 5 —7
1 6 2

(11).

Consider the following determinant:

-2 1 4 |'—2 1'|

3.5 713 5 =(=2)65)2)+M)(E7NA) + (4)(3)(6) — (HB)(1) — (=2)(=7)(6) — (1)(3)(2)
1 6 2 |_1 GJ

—20-7+72-20—-84—6
— —65
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In Exercises 15-18, find all values of A for which det(A) = 0.

A—=2 l
15. A =
-5 A+4
Calculate the determinant of matrix 4 which is

det(A) = (A —=2)(A+4) — (-5)(1) =22 +2X —8+5 =A% +2X — 3

Set the determinant equal to zero to find the values of A that make the
determinant zero: A2 + 2X — 3 = 0

Factor the quadratic equation to find the values of A: (A + 3)(A — 1) = 0

Solve for A to get A 3and \ = 1.

Hence, the values of A for which det(A) — 0 in Exercise 15 are A 3 and
A= 1.
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In Exercises 21-26, evaluate det(A) by a cofactor expansion
along a row or column of your choice.

3 0 7 3 3 0 5]
M. A=] 2 5 1 woa— |2 2 0 72
L J 4 —3 0
-0 2 10 3 2]

DEFINITION 2 If A is an n x n matrix, then the number obtained by multiplying the
entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called
cofactor expansions of A. That is,

det(A) = a1;Crj +az;Coj + - -+ +anCyj (7)
|cofactor expansion along the jth column]
and
det(A) = a;1Ciy + ai2Ciz + - -+ + ainCin (8)
|cofactor expansion along the ith row]
21-
Solution:
-3 07
4 =2 51
-1 0 3
51 21 2 5
=-3x | TO0x |7 =
0 3 -1 3 -1

= - 3x(5x5-1x0)+0x(2x5-1x(-1)+Tx2x0-5x%(-1)
= -3x(25+0)+0x(10+1)+7x(0+5)

= -3x(25)+0x(11)+7=(3)

= -75+0+35

= - 40

Note: Choosing the second column is faster in calculations
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25-

Solution:

203 0 5

2 2 0 -2
| = 4 1 -3 0

210 3 2

2 0 -2 2 0 -2 2 2
=31 -2 0 |-2=|4 -3 0 |+0=x]4 1

10 3 2 2 3 2 2 10

=3x(-78)-3%(-48)+0-5x(30)
= -234+144+0- 150
= - 240

Note: Choosing the third column is faster in calculations

ba S

bd s Bl

— |

ke
[

LH,_IA;EJ
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2.2 Evaluating Determinants by Row Reduction

In Exercises 9-14, evaluate the determinant of the matrix
by first reducing the matrix to row echelon form and then using
some combination of row operations and cofactor expansion.

— 3 1
5 -9 6 3
14.
1 2 —6 -2
2 8 6 1
14 i ‘=9 3 i\/
£ = & 3

1 =2 3 ¢

Ry Re—12g,
4 = 3 %
1 -9 =
o o -3
Lo lo) {08 23
Ry = Ry +%R,
i -2 7 14
(o) L -9 =2
o o -3 1
0 o o I3

Ex pand alony Colymm=~1 :

(L -3 =2 - 9
@£ &0 24 | R 1
-3 -1 + (0) 1) 6 -2 | -+

0 0 '—13 O 0 __’3
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a2 3 1 4+1 |2 3 1
(@) ¢-1) L -9 -3 [+ (®) (-1) 1 -5
0 o -3 0 -3 -1
_ 1 =5 =2
s -3 -1 +o0 + 0 "'l' 0O
0 0 =3

Expand aloyg Column a7

241 [—9 - ey
+@Een [P R Lt 2
O —I3 3 -1
= (-3 X13) +ox(-) +o0 +0O

&l Cl2 3] =aa-ne )
33

A4 | o
— @y (7% =k
(¢] -3

(1

Hena, detaminard of  Given  meddix ) Hene
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In Exercises 15-22, evaluate the determinant, given that

a b ¢
d e f|l=-—6
g h i
a b C a b c
20, 2d 2e 2f 22. | d 4 f
g+3a h+3b i+ 3c 2a 2b 2c¢
20-
a b c a b clT—
2d 2e 2f [-3R.3|2d 2e 2f|=R,
g+3a h+3b i+ 3c g h i 2
a b c
2ld e f|l=2(-6)=-12
g h i
YT a h C a b _
G2 NSef |2 2)des]= vro =
da 2b 2C a b
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In Exercises 25-28, confirm the identities without evaluating
the determinants directly.

(5] bl -+ fta (] + f'bl -+ Sd al > ds
28. (5] bz + ta; Cy + f'bz + sax| = f}'l bz b3
(s b3 -+ fas C3 + f’b_?, -+ Sds 1 Ca C3

For question 28, the given matrices are equal without directly
evaluating the determinants because the second matrix is obtained by
adding multiples of the first column to the second and third columns
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In Exercises 29-30, show thatdet(A) = 0 without directly eval-
uating the determinant.

-4 1 1 1

1

1 —4 1 1 1

30. A = 1 1 —4 1 1
1 1 1 —4 l

1 1 1 I -4

Proceed with row operations.

Explanation:

Add the first row to each of the subsequent rows i.e. apply a row operation Ry —+ R; + Ra + Ra + Ry + Rs.

0 0 0 0 0
1 -4 1 1 1
detA=det |1 1 —4 1 1
1 —4 1
|_1 1 1 —4J
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2.3 Properties of Determinants; Cramer’s Rule

In Exercises 15-18, find the values of k& for which the matrix A

1s invertible.
[1 2 o"l
18. A=1k 1 &k

LO21J

Expanding matrix A through row 2 :

1
A| = |k
0

ko = b2

0
k
1

(k}20+11n 1 2
N 2 1

—k
0 1‘“ ]‘u 2

— (=k)(2 = 0) + 1(1 — 0) + (=k)(2 — 0)
= (—k)(2) + 1(1) + (—k)(2)

— —2k+1—2k

— 4k +1

Now A will be invertible if [A| £ 0
Now we will find the values of k at which the matrix will not be invertible.

= |A| =0
= —4k+1=0

= —4k = -1

_ =1 _ 1
= k== =4

Soatk = = , matrix A will not be invertible.

1
4
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In Exercises 19-23, decide whether the matrix 1s invertible, and
if so, use the adjoint method to find its inverse.

2 0 3
20. A = 0 3 2
-2 0 —4
Solution:
203
/=] 0 3 2
20 -4 -
“(-12+0) -(0+4) +0=+6) |
IR I N = 0r0 +(-8+6) -(0+0)
7o -4 -2 -4 20 +(0-9) -(4+0) +(6+0)
=2x(3%(-4)-2x0)+0x(0x(-4-2x%(-2)+3=x(0x0-3=(-2)) _—1"' 6 T
=2%(-12+0)+0x(0+4)+3x(0+6) I
=2x(-12)+ 0% (4) + 3 x(6) -9 -4 6
=-24+0+18
=-6 -12 0 -9
=| -4 -2 -4
6 0 6
203 —
Adi(A)=Adj| 0 3 2
1
-20 -4 I\'O\\-;AJ:EXAQEE{AJ
13 2] o 2 o 3| [ 12 0 -9
0-4| |-2-4] |20 !
< - =— =% -4 -2 -4
-6
_ |0 3‘ 2 3‘ 2 o‘ 6 0 6
0 -4 2 -4 20
Los 23 L|20
32 02 03 2 0 15
=| 0.6667 0.3333 06667
TE®(-4)-2%0) -(0x(-4)-2x%(-2)) T(0=0-3=(-2)) -1 0 -1
S| A0x(-4)-3x0) T(2x(-4)-3x(-2)) -(2x0-0x(-2)
+H0x2-3x3) -(2%x2-3%0) +{(2%x3-0x%0)

We can find |A| from matrix C directly by the following Def:

DEFINITION 2 If A is an n x n matrix, then the number obtained by multiplying the
entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called
cofactor expansions of A. That is,

det(A) = ay;Crj +arjCyj + -« - - + ay; Cyj (7)
|cofactor expansion along the jth column|
and
det(A) = a1 Ciy + ai2Cia + - - - + @inCin (8)

|cofactor expansion along the /th row]|




In Exercises 24-29, solve by Cramer’s rule, where it applies.
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26.
dx —

x —4y 4+ z

y + 2z

2x + 2y — 3z

_ 144 144

_ 61 _ 6l

_ 230 46
35 11
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More details:

Use Cramer's Rule to find the values of x, y, Z.

X -V z -1
D, D, D, D
-4 1 -6
D.=[-1 2 1
2 -3 20
21 1 1 -1 2
=-4= -1= -G =
-3 ED‘ 2 ED‘ 2 -3‘

= 4% (2%x20-1%(-3))-1x(-1%x20-1x2)-6x(-1x(-3)-2x2)
= - 4x(40+3)-1x(-20-2)-6x(3-4)

= 4% (43)-1%(-22)-6%(-1)

= _172+22+6
= _144

1 1 -6
D =4 2 1
"2 23 20

21 4 1 4 2
=1= 1% -6 =

-3 20 2 20 2-3‘

=1%(2%x20-1%(-3))-1%(4x20-1x2)-6x(4x(-3)-2x%2)
=1x%(40+3)-1%(80-2)-6x(-12-4)

= 1% (43)-1x%(78)-6 % (- 16)

=43 -78+56

=61
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1% (-1%(-3)-2%2)+4x@x(-3)-2x+1x(Ex2-(-1)x

1 -4 -6
D_=|4 -1 1
2 2 20
101 11 4
“1E g 20T 2 20707
=1x(-1%20-1=2)=4x(4=20-1x
=1%(-20-2)+4=(80-2)-6=(8+12)
=1%(-22)+4=(78)-6=(10)
= .22+312-60
=230
1 -4 1
D=|4 -1 2
2 2 -3
12 4 2 4
R Y el Y B B
=1%(3-4)=4x{-12-4)=1%(8=2)
=1x(-1)+4x=(-16)=1=(10)
= _1-64+10
= .55
X -V z -1
D, D, D D
x -V z -1
144 7 81 230 -55
X -1 -3 -1 T -1
-144  -55°61 -535° 230 -535
144 61 -230
T 5T 55077 55

-
=

J-Gx 4= 2-(-1)= )

-

)
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Useful links:

https://onlinemschool.com/math/assistance/matrix/determinant/

https://atozmath.com/matrix.aspx?g=det



https://onlinemschool.com/math/assistance/matrix/determinant/
https://atozmath.com/matrix.aspx?q=det

CHAPTER 4: General Vector Spaces
4.1 Real Vector Spaces

In Exercises 3-12, determine whether each set equipped with
the given operations is a vector space. For those that are not vector
spaces identify the vector space axioms that fail.

7. The set of all triples of real numbers with the standard vector
addition but with scalar multiplication defined by

k(x,y,z) = (kK*x, k®y, k*z)

Given definition of scalar multiplication as

k(x,y,z) = (kgx, K2y, kgz)

Lets verify distributive axiom : We know In a vector space | if kg
(k] + kg)u = kju+ kon.

Here

and ks are two scalars and u is an element in vector space then

(k1 + ko)u = (k1 + ko)(x,¥,2)
- ((kl + 1) %x, (k1 + ko) %y, (kg + kg)zz)
= ((k? + k3 + 2kiko)x, (k] + k3 + 2kiko)y, (K} + k3 + 2kiko)z)
= ((kix + k3x + 2k kox), (kIy + k3y + 2kikoy), (kiz + k3z + 2k1koz))
= (kix, iy, kiz) + (k3x, k3y, k3z) + (2kikox, 2k koy, 2k koz)
=ki(x,7,2) + ko(x,y,2) + (2ki1 kox, 2k; koy, 2k koz)

= kju + kou + (2k; kox, 2k koy, 2k koz)
(kl + kg)u # kju +kou

Since, it does not follow the distributive property, hence given definition is not a vector space.
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11. The set of all pairs of real numbers of the form (1, x) with the

operations

(Ly)y+ (L, y)=(,y+y) and k(l,y)=(1,ky)

letu=(1

Axiom 1.

Letu=(1,¥),v=(1,¥) beinVthen

utv=(Ly)+(Ly)
=Ly+y)

If uandvareinV,thenu+ visin V. Vis closed under addition.

,¥),v=(L,¥),w = (1,y") beinVandkis scalar.

according to (1)

Axiom 2.
Checku+v=v+u
u+v=(1,y)+ (1,y") according to (1)
= (1;}' + y’)
= (1> y’ + YJ
=1y)+ Ly
=v+u
Axiom 2 is satisfied.
Axiom 3. Associativity
ifu,v,w € V then

ut (v+w) = (1,y) + ((L,y) + (1,5")

=1Ly + (1 Y +y")
=Ly+y+y"
=L F+y)+y"
=Ly+y)+(Ly")
=(Ly) +(Ly) + 1Ly")
=(u+v)+w
Associativity is satisfied.
Axiom 7:
Axiom 4. Let kis scalar, show that k(u + v) = ku + kv
Let 0 = (1, 0) be zerc vector in V then k(u+v) =k((1,¥) + (1,¥") according to (1)
u+0=(1,y)+(1,0) =k(1,y+7¥)
= (L) = (Lk(y +v)
=1u = (1,ky + ky")
Axiom 4 satisfied. = (1,ky) + (1,ky’) according to (2)
Aoiom 5. =k(1,y) + k(1,5
letu=(1,y) and v=(1,y)beinVsuchthatu+ v={( — ku+kv
u+v=(Ly)+(1y) Axiom 7 i satisfied.
= (1,0)=(L,y+V¥) Axiom 8:

=y+y =0
=y=-y
So,v = (1,—y) isthe inverse of u € V
Axiom 6.
Let kbe scalarin R, then ku also be in R.
kn =k(1,y)

= (L,ky) accordingto (1)

fue Vandkisscalarthenku € V

Let k.m are scalars, show that (k + m)u = ku + km
(k +m)u = (k+ m)(1,y) according to (2)

— (1, (k+m)y)

= (1,ky + my)

= (Lky) + (1,my)

=k(1,y) + m(L,y)

= ku+mu
Axiom 8 is satisfied.
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Axiom9:
Let k,m be scalars, show that k(mu) = (km)u
k(mu) = k(m(1, )
=k(1,my) according to (2)
= (1, kmy)
~ (km)(1,y)
= (km)u
Axiom 9 is satisfied.

Axiom 10:
To show that 1u = u then
lu=1(1,y)

= (1,1y)

=(L,y)

=1

Axiom 10 is satisfied.
Therefore, V is the vector space.
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4.2 Subspaces

1. Use Theorem 4.2.1 to determine which of the following are
subspaces of R*.

(a) All vectors of the form (a, 0, 0).
b) All vectors of the form (a, 1, 1).
¢) All vectors of the form (a, b, ¢). where b = a + c.

(
(
(d) All vectors of the form (a, b, ¢), where b = a + ¢ + 1.
(

e) All vectors of the form (a, b, 0).

Let's go through each part to determine whether it satisfies the conditions of Thecrem 4.2.1:

(a) All vectors of the form (5,0,0).

To check if this set is a subspace, we need to verify conditions (a) and (b) of the theorem.
v (a)Ifu=(a1,0,0) and v = (as,0,0), then u+ v = (a3 + as, 0, 0). This vector is still of the form (5,0,0), so (a) holds.
= (b) If kis any scalar and u = (a, 0, 0), then ku = (ka, 0, 0). This vector is still of the form (2,0,0), so (b) holds.
Therefore, the set of all vectors of the form (5,0,0) is a subspace of K3.

(b) All vectors of the form (a,1,1).
» (a)lfu= (a1, 1,1)and v = (as,1,1), then u + v = (a; + as, 2, 2). This vector is not necessarily of the form (a,1,1), so (a) does not
hold.
Therefore, the set of all vectors of the form (a,1,1) is not a subspace of RS,

() All vectors of the form (a,b,c), where b = a + c.

» (a) Ifu = (aj, by, ¢1) and v = (as, ba, ca), then u + v = (a; + az, by + ba, ¢1 + ¢2). Since by = a; + ¢; and by = as + ¢, we have
b1 + bs = (a1 + ag) + (c1 + c2), and this satisfies the condition b = a + c. Therefore, (a) holds.
» (b} If kis any scalar and u = (a, b, ¢), then ku = (ka, kb, kc). Since b = a + ¢, we have kb = ka + ke, and this satisfies the
condition b = a + c. Therefore, (b) holds.
Therefore, the set of all vectors of the form (a, b, ¢), where b = a + ¢, is a subspace of R

(d) All vectors of the form (a,b,c), whereb = a + ¢ + 1.
= (a)Ifu= (aj, by, c1) and v = (as, be, ca), thenu + v = (a; + ag, by + be,c3 + ¢3). Sinceby = a; + ¢y +1land by = ag + o + 1,
we have by + by = (al + az) + (C1 + CQ) + 2, and this does not satisfy the condition b=a+c+1. Therefore, (a) does not hold.
Therefore, the set of all vectors of the form (a,b,¢), where b = a + ¢ + 1, is not a subspace of R3.

Another solution:



CHAPTER 4: General Vector Spaces

a) Let S be the subset of R? defined by S = {(X,y,z} ER:y=z= D}

Then S is a non-empty subset of R?, since (0,0,0) €8S

Letu = (x3,0,0), v = (x2,0,0) € S; Then x;, Xg are real.

Leta,b € R.Then au + bv = a(x;,0,0) + b(x2,0,0) = (ax; + bxy,0,0) € S, sinceax; + bxs € R.
This proves that S is a subspace of R?

Step 3

b)

Let S be the subset of R* defined by S = {(x,y,z) e R®*: y =z =1}

Then S is a non-empty subset of R?, since (1,1,1) € S. But S does not contain the null vector (0,0,0) .
Sis not a subspace of R3, since every subspace W of a vector space V must contain the null vector 8 of V.

Step 4

Q

Let S be the subset of R* defined by S = {(x,y,2z) e R* : y = x + 2}

Then S is a non-empty subset of R?, since (0,0,0) € S

Letu = (x1,¥1,21), Vv = (X2,¥2,22) € S; Then x;,¥;,Z are real and y1 = X3 + 21, ¥2 = Xo + 29

Leta,b € R.Then au+ bv = a(x1,¥1,21) + b(x2, y2, 22) = (ax; + bxg, ay; + bys,az; + bzs) € S, [
ax; + bxy + az; + bzg = a(x; + z1) + b(x2 + z2) = ay; + bys |

This proves that S is a subspace of R3

Step 5

d)

Let S be the subset of R® defined by S = {(x,y,2) € RP:y=x+z+ 1}

Then S is a non-empty subset of R?, since (1,3,1) € S. But S does not contain the null vector (0,0,0) .
Sis not a subspace of R3, since every subspace W of a vector space V must contain the null vector 8 of V.
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3. Use Theorem 4.2.1 to determine which of the following are
subspaces of P;.

(a) All polynomials ag 4 a;x + a,x? + asx® for which
ay = 0.

(b) All polynomials ag + a;x + axx? + asx® for which
ag+a; +ax; +a3 =0.

(c) All polynomials of the form ay + a;x + a»,x> + asx* in
which ay, @y, a>, and a5 are rational numbers.

(d) All polynomials of the form ag + a;x, where ay and a, are
real numbers.

Let V be a vector space over a field F and suppose T is a subset of vectors contained in V. Then, T is a subspace of V if it
satisfies the following properties:-

a.)T contains the zero vectorie0 € T
blifa,be F = au+bve T forallu,veT.

a)let a,b € R(we suppose the field is R here).Let T be subset here,clearly,0 € T.

Letu = ag + a;x + agx® + agx®, v = by + byx + bax? + byx® € T.
=ag=Dby=0...(1)

= au+ bv = a(ag. + arx + agx? + a3x3) + b[bo + byx + box? + ngg)

= au + bv = aap + bbp + a(alx + ax® + asxs) + b(blx + box? + bsxg)

= aag + bby = 0 from(1)

= au + bv = 0 + aa;x + aasx> + aasx® + bbix + bbox® + bngg)

= au + bv = 0+ (aa; + bby)x + (aas + bhg)x? + (aag + bbhy)x® € T

So, T is a subspace here.

Step 2

b.)let a,b € R(we suppose the field is R here).Let T be subset here,clearly,0 € T.
Letu = ag + aix + agx” + asx®, v = by + bix + box? + bax® € T.
=ap+a;t+a+ag=bg+by+bys+bys=0

= a(ap+ a1 +as+ ag) + b(bg+by+by+b3) =0

= aag + bbg+ aa; + bb; +aas + bby+aas+bbg=0...... (2)

= au+bv = a(ao + ax + asx? + a.gxs) + b(bo + bix + box?® + b3x3)

= au + bv = (aag + bby) + (aa; + bby)x + (aas + bbs)x? + (aas + bbg)x®

= au+ bv € T. from(2)

So, T is a subspace here.
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c)leta, b € R{we suppose the field is R here).Let T be subset here,clearly,0 € T.
we have, /2,1 € Randx,0 € T, BUT v/2x + 1.0 = v/2x ¢ T\since v/2 is not a rational number.

So, T is not a subspace here.

d.)Leta, b € R{we suppose the field is R here).Let T be subset here,clearly,0 € T.Letu = ag + a;x,v =by+ bix € T.
= ag,a, bp,b; €R

= (aap+ bbp), (aa; +bb;) eR..... (3).

= au + bv = a(ag + a;x) + b(bg + bix)

= au + bv = (aap + bbyg) + (aa; + bby)x

= au+ bv € T. from(3)

So, T is a subspace here.
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7. Which of the following are linear combinations of
u=(0,-2,2)andv = (1,3, —1)?

(a) (2,2,2) (b) (0,4.5) (¢) (0,0,0)

(a) Suppose that the given vector w = (2,2,2).
Then, the linear combination should be written as,
(2,2,2) = a(0,-2,2) +b(1,3,-1)

Explanation:

If two vectors are linear combinations of other then it can be written as w = ail + bv

Step 2

On comparing both sides the system of equation should be,

0+b=2.101
—2a+3b=2..(2
2a—b =2 ..(3)

The solution for the system of equations shouldbea =2 andb = 2.

Thus, (2,2, 2) should be written as a linear combination of the given vectors.
(b) Suppose that the given vectorw = (0,4, 5) .

Then, the linear combination should be written as,

(0,4,5) = a(0,-2,2) + b(1,3,-1)

On comparing both sides the system of equation should be,

0+b=0..1
—2a+3b=4..2
2a—b =5 .[3)

There will no unique solution for the system of equations.

Thus, (0,4, 5) should not be written as a linear combination of the given vectors.
(c) Suppose that the given vector w = (0,0,0).

Then, the linear combination should be written as,

(0,0,0) = a(0,-2,2) + b(1,3,-1)

On comparing both sides the system of equation should be,

0+b=0.11
—2a+3b=0..2)
2a — b =10..3)

The solution for the system of equations shouldbea =0and b = 0.
Thus. (0. 0.0} should be written as a linear combination of the aiven vectors.
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8. Express the following as linear combinations of u = (2, 1, 4),
v={(1,—1.3),and w = (3, 2, 5).

(a) (=9,—=7,—15) (b) (6,11, 6) (c) (0,0,0)

a)let, au+ bv + cw = (-9 ? ? —15)
3| —9
The augmented matrix= {1 —1 2| —7
5| —15
Apply elementary row operatlon
2 1 3| —9
1 -1 2| -7
4 3 515
I
Rl = f
_1 1 3 o 0
) T F
1 -1 2| -7
4 3 5|15
Ry=Ry—R;, Ry=Ry— 4R,
_1 1 3 o k]
T F) T
a 1 5
0 -5 3|3
0 1 -1 3
Ry = —3Ro
r 1 a 0
1 3 3 |3
1 .
0 1 —5 -":;‘_'
o1 -1 3 |
Ry=Ry;— Ry
[ 1 2 | _9
2 2 2
1 .
01 —3| 3§
2 4
00 —3{ 7
3= —%B:!:J. .
r 1 :
1 3 3 |3
1 .
0 1 —3| 3
00 1 —2
R2=Rz+31;R3 R1=R1—%Rﬂ
r 1 3
1 3 0] —3
0 1 0 1
o o 1| -2
R, =R, - 3Ry
[1 0 0] -2
01 0| 1
o 0o 1| -2
This gives, a=-2b=1c=-2
Then, —2u+ v — 2w = (—9, -7, —15)

biLet, au + bv + cw = (6,11, 6)

2 1
The augmented matrix= |1 —1
4 3
Apply elementary row operation
2 1 3| 6
1 -1 2|11
4 3 5|6
RIZRL
1 1 3|3
I )
1 -1 2|11
4 3 5| 6
Ra=HRs—R;, Ra=Ryg— 4R,
1 1 3
2 2
0 -3 3|8
o 1 -1| -6
Ro= 3Ry
1 % % g
01 3|-¥
0 1 -1 | —6 |
Rz =Rz —Rs
M L 3 g
2 2
01 -3|-%
0 0 3| 3]
1 3 3| 3
0 1 _','IE 16
0 0 1 1 |
Ro=Ra+ +R3,Ri=R; — 3Ry
[1 3 0] 3
0 1 0|-5
0 0 1|1
Ri=Ri— 3R
1 0 0f 4
0 1 0f-5
o 0 1] 1

Thizs gives, a=4,b=-5, c=1
Then. 4du — 5v + w = (6. 11.6)

3| 6
2111
5] 6
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c)Let, au + bv + cw = (0,0,0)

2 1 3|0
The augmented matrix= |1 —1 2|0
4 3 5|0

Apply elementary row operation

2 1 3|0 1 0 00
1 -1 2|0{RREF={0 1 0|0
4 3 5|0 0 0 1|0

This gives, a=0,b=0,c=0
D.u+0.v+0.w=(0,0,0)

c)

(0,0,0) = ey (2,1, 4) + a1, —1,3) + o 3, 2, 3]

In parts &) and b} we saw that cocfhoents metrix of correspondent linear
system s regilar, which mesns vectors o, v and w are independent, which
implies that there 18 only trivial solution for this vector equation:

= ) =1
= =1

iy — A
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9. Which of the following are linear combinations of

4 0 1 -1 0 2
A= , B= , C= ?
R e P S

() [_6 _8] (b) [ﬁ g] © [_;, f]

I -8
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10. In each part express the vector as a linear combination of
pp=2+4+x+4x%p,=1—x+3x% and
Py = 3+ 2x + 5x°.

(a) —9 — 7x — 15x2 (b) 6+ 11x + 6x2
) 0 (d) 7+ 8x + 9x?

(a) Here the given vectoris —9 — Tx — 15x°.

Let, —9 — 7x — 15x* = ap, + bps + cps.

where a, b, ¢ are some scalar.

-9 —Tx—15x? =a(2+x+4x%) + b(1 —x+ 3x?) +¢(3+ 2x + 5x7)
= —9—Tx—15x=(2a+ b+3c) + (a— b+ 2c)x + (4a + 3b + 5¢)x?
Comparing the coefficient of the like terms, we have

2a+b+3c=-9

a—b+2c=-7

4a + 3b + 5c = —15.

Solving for a, b, c

we have,a=—-2,b=1 and c=-2.

Therefore we have
—9— 7x — 15x" = —2(2+x+4x") + 1(1 —x+ 3x") — 2(3 + 2x + 5x7)

(D) Here the given vectoris 6 + 11x + 6x2 .

Let, 6+ 11x + 6x% = ap; + bpa + cps,

where a, b, ¢ are some scalar.

64+ 11x+ 6x% = a(2 + x+ 4x?) + b(1 — x + 3x) + ¢(3 + 2x + 5x%)
= 6+ 11x + 6x> = (2a+ b+ 3c) + (a — b+ 2¢)x + (4a + 3b + 5¢)x?
Comparing the coefficient of the like terms, we have

2a+b+3c=6

a—b+2c=11

4a+3b+5c=6.

Solving for a, b, c

wehave,a=4b=-5 and c=1.

Therefore we have

6+ 11x + 6x2 = 4(2 + x + 4x?) — 5(1 — x + 3x?) + 1(3 + 2x + 5x7)
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[c) Here the given vectoris 0.

Let, 0 = ap; + bpa + cps,

where a, b, ¢ are some scalar.

s0=a(2+x+4x%) +b(1 —x+3x%) +c(3+2x+5x") = 0=(2a+b+3c)+(a—b+2c)x+ (4a + 3b + 5c)x
Comparing the coefficient of the like terms, we have
2a+b+3c=0

a—b4+2c=0

4da+3b+5c=0.

Solving for a, b, e

wehave,a=b=¢c=0.

Therefore we have

0=0(2+x+4x%) +0(1 — x + 3x%) +0(3 + 2x + 5x7)..

(d) Here the given vectoris 7+ 8x + ox?
Let,?+81+912=ap1+bpz+{:pz.

where a, b, ¢ are some scalar.

L T+8x+9x =a(2+x+4x") + b(1 —x+3x) +¢(3 + 2x + 5x°)
= 7+8x+9x"=(2a+b+3c) + (a— b+ 2c)x + (4a + 3b + 5¢)x?
Comparing the coefficient of the like terms, we have

2a4+b+3c=T

a—b+2c=28

da+3b+5c=9.

Solving for a, b, c

we have,a=0b= -2 and c=3.

Therefore we have

T+8x+9x*=0(2+x+4x%) — 2(1 —x+3x%) + 3(3 + 2x + 5x7)
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11. In each part, determine whether the vectors span R>.
(a) Y1 = (25 2': 2)1 i = (03 03 3)3 V3 = (01 11 1)'
(b)y vi=(2,—1,3), v» = (4, 1,2), vy = (8, —1,8)

For the first two, it's very simple. A vector spans R3 if every vector u in R3 can be written as a linear combination of the vectors in the set 5.

- — — —
v

cyuyFferurtac, i, =

Where v is a vector understood to be any vector in R3.

20 0ler] vi ]
20 1jez|=|vz|
23 ij ('_1J |=]J

|
2 0
o o

Since the determinant is nonzers, the vectors span R3.

I
—
W o
— e
|
=
]
—

Easy encugh.

=2(0*1 —1*3)+0+0= —6

Second one.

24 g [a] [w]
11 —lfeaf=|va]
3 2 EJ{'RJ \1]

1ot
—_— =
| 2
L
I
-
g
N —
o —
= |
N
|
—
.
M ——
L |
w |
+
e
o0
e e—
w |
L
g =

fad
(oS ]
%0

= (2J10) — (4N —3)+(8)—35) =0

Since the determinant = 0, the set does not span R3.
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12. Suppose that v, = (2, 1,0, 3), v,
v; =(—1,0,2,1).
span{vy., vz, v3}?
(a) (29 31 _71 3)

(c) (1, 1,1,1)

=(3,-1,5,2),and

Which of the following vectors are in

(b) (0,0,0,0)
(d) (—4,6,—13,4)

(k)
. . . . : 0] 3 1
To check which of the following vectors are inthe span of {v;, va, va}. g : . .
12} {a) a b c
2 2 3 1 0 0 5 2
3 1 b 1 0 L] 3] 2 1
7l "ol "Pls] Tl 2
3 i 2 1
Simelify each term.
[0] [2a] 3b c
Simelify each term. 0 a b 0
[27 2a 1b e 0 0 &b I B
3 al 1B, 0] l2al |2 e
7 0 5b 2
[ 3] da 25 c 224 the comasponding elements.
[0] [2a + 3b] [—&]
&2d the coresponding elements. 0 a_h 0
[ 27 2a + 3b] [ ] }
0 0 5b 2
1 a b 0 . ' o
7 0+ 5b 2 A e+ Lel
3] Bat 3] el 44d 0 znd 5b.
2dd 0 and 5h, 0 20 + 38 ©
(2] [2a+3%] [-<] 0 e-b] |0
3 a—b 0 0 5b 2c
T 5k A 10 | da + 2b] c
ER la+26) | o
Add the comasponding elements.
&2d the coresponding elements. 0 2a+3b—c
[27 2a + 36 — ] 0 a—b+0
3 a—b+0 0 &b+ 2c
7 5b + 2e 1 | da + 25+ ]
ER la+ 36+ c
Adda — bandll
Adda —bandD. [0 [2a + 3b— £]
[ 2] 2a + 3b — ] 0 a b
+ : ;’ 0 5b 4+ 2
' o s 0] [3ai1ie
EX 3o+ 25+ o - - -

Write 2z 2 linear system of egustions.

2=2a+3b-c

3=a-b
7=5b+2c

I=3a+2b+tc

Solve the system of equations.
b 1,c l,a=2
(2,3, —7.3) iz in the span of {w, va. va}.

‘Write 2z 2 linear system of aquations.

0=243b-c
D=a—-h
0=5b+ 2
0=3a+2b+c

Solve the system of equations.

a=0c=0b=0

(0,0,0,0) is in the span of {vi, v, va}.




CHAPTER 4: General Vector Spaces

4 2 3 1
3 1 1 0
3l = a 0 + b " b 2
4 3 2 1
Simglify each term.

[ 47 [2a I e
6 a b , ]
1|~ |o| s
4 | 1a 26

+

[2a + 3b]
a—b
0+ 5b
|da + 2b]

5b
|3a + 2B)

&2d the comesponging elements.

c
0
2e

&dd the comasponding elements.

1]
1 2 3 1
: =a lll tb ; tc
1 3 2
Simiglify each term.
1] [2a 3b c
1 |, b I 0
1 0 5b 2
1] | 2h c
&2d the comasponding elements.
1] [2a + 3b] [—e]
1 a—b 0
1 " |oisb| |2
1] |Ja + 2b] | o
&24 0 znd 5h.
1] [2a + 3b] [—c]
1 | e b . 0
1 5b 2
1] |3z + 2b] | o
."-‘-._:-EI the cormesponding elements.
1 2a 43—
1 a—b+0
1| | 5b42¢
1] |da + 2B+ |
."-'-._:-EI a !:-an: 0. )
1 2a+ 3¢
1 a—b
1| | 5b+2c
11 |da + 2B+ e

‘Wite 25 a linear system of aguations.

l1=2a+3b—c

l=a—h
1=>5b+ 3¢
l1=3da+2b+c

Solve the system of equations.
Nosolution

(1,1,1,1) iz notin the span of {v1, va, va}.

4 [2a + 3b — ]
6 a—b4+0
13| | Sb+ 2
| 4 | |3a + 2b 4 ]

Adda— bandll

[ 47 [2a + 3b — ]
6 a—b
13| | 5b+ 2
| 4 | |3a + 26 4 c]

Write 2z 2 linear system of eguations.
4=2a+3b-c

i=a—b
13 = 5b + 2¢

4=3a+2b+c

Solve the system of equations.
b=-3,e=1a=1

(—4,6, —11,4) iz inthe span of {vy, va, va}.
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13. Determine whether the following polynomials span P,

py=1—x+2x p,=3+nx,
p: =5 —x +4x?, p,=—2—2x+2x?

To determine whether the glven polynomials span ( P; ) (the vector space of polynomials of degree at most 2), we need to check If any
polynomial In ( Py ) can be expressed as a linear combination of these palynemials.

Let's dencte the polynomials as follows
Pi(x) =1-x+2x% and [pa(x)=3+1x]

ps(x) =5—x+4x% and [py(x)=—2 — 2x+ 2x7

Mow, we need to find coefficients { 3, b, ) and [ ¢ ) such that
[f(x) = a-pa(x) + b pa(x) + c- pa(x) + d - pa(x)]
Substituting the expressions of the given polynomials
[f(x)=a(l—x+2x") +b(3+x) +c(5 —x+4x7) +d(-2 — 2x + 2x%)]
[=(a—d)+(b—c—2d)-x+ (2a + 4c + 2d) - X]

Mow, equating the coefficients of f{x) and the expression above
For constant term

a-d=c-2d=20

a=d

c = 2d

For coefficient of { x)

b-c-2d=0

b=c+2d

b = 3d
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For coefficient -Df[IE:I
2a+4c+2d=0

2d+8d+2d =0

12d =10

d=0

Fromd =0, wegeta=0 and c=0.

Therefore, b =3d = 0.
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14. Let f = cos? x and g = sin® x. Which of the following lie in
the space spanned by f and g?

(a) cos2x  (b) 34 x? (¢) 1 (d)sinx (e) 0
sinx « spanfl g}
a bR and
Let asin’z 4 booe’x — "nx
a . 2 S=rami
f=cos’x and g=sinx
b =
Consider the identity )
¥
2 =2 * E
COS X —sin'Xx = cos 2x —
amd  for x %
Then a1
Then o hea b differem wehum, S thin nimgeniblc hao=Sae
cos 2x € span{cosx, sinx}
sinx # spanl g}
Mow we know that Mk e 3oz Bk
sin’x + cos’x = 1 3o muall.gl
- » arer 4 ben'x — 3 4
So =
1 E Spaﬂ{sjﬂzxj L‘DS2X} i:l.HJl b MI v J I;
#fa—hjos's +b=2 4
Also note that Wit kaa of generdity we s Beta = b
Then moxrum welus oF lcft hend side
Osin®x + Ocos’x = 0 a-bib=a
= 0 < span{f, g}
end #he momon volue of BHE docan't —matk bocouacs
Im 3¢ s o)
S =S an= GHE st e =l Them =ur su i = ey v =l

143 # =pan|l, g)




CHAPTER 4: General Vector Spaces

22. Let vi=1(1.6,4), v»=(2.4,—-1), vy =(—1,2.5), and
w; = (1, =2, —=5). w2 = (0, 8,9). Use Theorem 4.2.6 to show
that span{vy, v5, v3} = span{w;, w,}.

THEOREM 4.2.6 IfS ={v|,Va, ..., vV, }and §' = {wy, W, ..., Wi} are nonempty sets
of vectors in a vector space V, then

span{vy, va, ..., v, } = span{w;, wa, ..., Wi}
if and only if each vector in S is a linear combination of those in S', and each vector in

S’ is a linear combination of those in S.

Given that, vi = (1,6,4),v2 = (2,4, —1),vs=(—1,2,5) and wy=(1,—2,-5),w2=(0,8,9).
To prove span{vl,v;:,ﬁ} = spa.n{wl,W;:} , we need to show that each vector from one set can be written as linear combination of vectors from
other set.

Set, vi = Wy + o Wa where oy, @z are constants to be determined.

So, (1,6,4) = a(1,—2, —5) + a(0,8,9)

= (1, 6, 4) = {0‘1, —2ay, —5&1) =+ (U‘, 8ara, 902}

= (1,6,4) = (a1, —2a1 + Basz, —bay + 9as)

Equating each components, we get

1= (451

6= —2a; + 8axa

4 = —barg + 9xa

Substituting eey = 1 in second and third equation, we get

3 — 1

g = 1

Thus, vi = @1 W1 + oW2

= V= Wi+ Wa [rar=102=1]

Set, va = Biw1 + Paws

= (2,4,-1) = p1(1,—-2,—5) + B2(0,8,9)

= {Erdr _1} — [ﬁl: —2, _5.31} + ['}1 832, gﬁ?}
= (2,4, -1) = (b1, —251 + 8P2, —551 + 92)
Equating each components, we get

2=0

4=—-2p1+ 8

—1=—-5p1+905

Substituting 81 = 2 in second and third equations, we get
Ba=1

Ba=1

Thus, va = 1w + Paws

= vo = 2W1 + W9 [‘.‘;5'122,,32:1]
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Set, v3 = 11wy + 72wz

= (-1,2,5) = 1(1,-2,-5) + v.(0,8,9)

= (—1,2,5) = (v, —2m, —571) + (0,872, 97)
= (-1,2,5) = (v, —2m + 812, —5m + 97)
Equating each components, we get

1=

2="2m+8m

5=—b11+97

Substituting 3 = —1 in second and third equations, we get
Y2=10

Y2=0

Thus, v = YW1 + YaWs

= v= [~n=—17=0]

Explanation:

SUPPOSE 17,19+« 0w ™ , Uy, are any vectors in a vector space V. Any vector of the form aju; + agug + ....... +ayuy, where the a;are
scalars, is called a linear combination of uy,ug, ... .. , Uy, . The collection of all such linear combinations, dencted by
span{ul, Ugy..... ,um}, is called the linear span of u, 1, . ... .. Sy .

So, vi = W1+ Wy
Vg = 2wy + Wy

v3=—w;=—w;+ 0.wo
Thus, v1, va, Vg can be expressed as the linear combinations of w, wa .
Also, wi = —v3 [ vg=—wq]
=wy=0.vi+0.vo+ (—1).v3
And, wo = vi — Wy [ cvi=wi+wa
= wy=v;—(—v3) [ w1 =—v3]

= Wp=7V1+ V3
=wos=v1+0.vo+v3
Hence,w; = 0.v; +0.vo+ (—1).v3 and
wy=v;+0.vo+v3
Thus, wq, Wa can be expressed as the linear combinations of vy, va, va .

Explanation:
IfS ={vy,vay.on... ,vip and S'= {wy,wy..... , Wi} are non-empty sets of vectors in a vector space V, then
span{vy, Vo, ...., vy} = span{wy, Wy, ...., Wy} if and only if each vector in S is a linear combination of those in S’ and each vectorin 8 is

a linear combination of those in S .
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4.3 Linear Independence

2. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in R°.

(a) (=3.0,4), (5,—-1,2), (1,1,3)
(b) (=2,0,1), (3,2,5), (6,—1,1), (7,0, =2)
a-
We know that the vectors {uiy, U, ..., Uy} s said to be linearly independent if ¢ty + Catta + . . . + cqlly = 0 then

€1 =Cy—...=¢Cp—=0.
(8) Given thatu; = (—3,0,4),uy = (5, —1,2),u3 = (1,1, 3).

Let us consider:
C1ly + C2Uz + C3lUz =

= c1(—3,0,4) + C2(5,-1,2) +¢3(1,1,3) =
= (—3c; + 5cy + c3, —Ca + C3,4¢q + 2¢5 + 3c3) = (0,0,0)

0
0

So we get,

—3cy +5ca+c3=0...(1)
—ca+e3=0...(2)
4cq +2C2+3C3=0...(3}

From equation (2):

ca =cC3

From equation (1):
—3ci +5ca+c3=0
= —3cy +5cy + ¢y =0, since ca =c3
= —3c1 +6ca =0

=0y =2,

From equation (3):

4cy +2c5 +3c3 =10
= 8ca + 2c2 + 3c2 = 0,since ¢; =2c2 and c3=ca
= 13cy =0

=cp=0

Since cg = Othereforecy =20, =0 and c3 =cy =0.
Hence, (—3,0,4), (5, -1,2), (1,1, 3) are linearly independent.

The determinant of the vector is needed to be determined and the vector system is checked that linearly dependent or independent.

The vector matrix is

-3 5 1
A=10 -1 1
4 2 3

The determinant of the above matrix is determined as

|A| = -3(-3-2) - 5(0 — 4) + 1(0 + 4)
-39

The determinant of the matrix is not equal to zero which means the vectors are linearly independent.



CHAPTER 4: General Vector Spaces
b-

THEOREM 4.3.3 Let S = {vy,V,, ..., V. } beaset of vectorsin R". If r > n, then S is

linearly dependent.

r=4,n=3,r>n,

so by this theorem, these vectors are linearly dependent.
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3. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in R*.

(a) (35 85 7-: _3)5 (15 Sa 3-: —l)., (25 _15 25 6)5 (43 25 61 4)
(b) (3,0,-3,6), (0,2,3,1), (0,—-2,-2,0), (—=2,1,2,1)

Solution (&)
Given veciors are

[3, 8,7,—3), {l, 5,3, —l}, [2, —1,2,6], [4, 2,6,4)
Let a,b,c,d are the scalars such as

a(3,8,7,-3) +b(1,5,3,—-1) +¢(2,—1,2,6) +d(4,2,6,4) = (0,0,0,0) (1)
=3a+b+2c+4d=0 (2)
8a+5b—c+2d=0 (3)
Ta+3b+2c+6d=0 (4)
—3da—b+6c+4d =0 (5)
Solving above equations we get
a=-d, b=d, c=-d.

For particular, let d=1. Then a=-1,b=1,c=-1
This shows that the vectors are linearly dependent.

(b} Given vectors are

(3,0,-3,6),(0,2,3,1), (0, -2, -2,0),(~2,1,2,1)

Let a,b,c.d are scalars such that

a(3,0,—3,6) +b(0,2,3,1) + c(0, -2, -2,0) +d(—2,1,2,1) = (0,0,0,0)

Then we get
dJa—2d=0 (1)
2b—2c+d=0 (2)
—3a+3b—2c+2d=0 (3)
ba+b+d=0 (4)

Solving above equations we get
a=b=c=d=0
This shows that the given vectors are linearly independent.
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4. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in P>.

(a) 2 — x +4x2, 34 6x + 2x2, 2 4 10x — 4x?
(b) 14 3x 4 3x2%, x +4x2, 54 6x +3x%, 74 2x — x?

a) we have the given vectors

2 —x+4x2%, 3 + 6x + 2x2,2 + 10x — 4x?
Let us consider

a(2 —x +4x%) +b(3 4 6x + 2x%) +¢(2 + 10x — 4x%) = Ofora, b, c reals.
= (2a+3b+2c) + x(—a+6b+ 10c) + x*(4a+2b —4c) =0

computing each power of x, we get
2a+3b+2c=0

—a+6b+10c =10

da+2b—4c =0

solving we get

a=0,b=0 and c=0
Thus the vectors 2 — x + 4x7,3 + 6x + 2x7,2 + 10x — 4x? are linearly independent.

b} we have the given vectors

1+43x+3x% x+4x% 5 4 6x + 3x4, 7 + 2x — x2
Let us consider

a(l +3x+3x2) +b{x+4x2) +c(5+ ﬁx+3x2) +d(T+2}L—x2) = 0fora,b,c,dreals.
= (a+5c+7d)+x(3a+b+6c+2d)+x*(3a+4b+3c—d)=0

computing each power of x, we get
at+5c+7d=0
3a+b+6c+2d=0
3a+4b+3c—-d=0

solving we get

Solve the equation forc .
c—_&2_ 1

5 5
3a+b+6c+2d=0

3a+4b+3c—-d=0

Solve the equation forb .
— _ 9 3d

b=—-%F+%

c=— o

~ 5
3a+4b+3c—-d=0

e

Solve the equation ford .

_ 4a
d_"!)a 324
h=—?+dT
— a i
C=-5— 7%

Simiplify the right side.
b= _5

PR
d= 3

c=—

il
SE

Simiplify the right side.
c=—
b=—

— da
d—17

S

5lg

Thus the scalars are not all zero. Hence the vectors 1+ 3x + 3x2,x + 4_xg, 54+ 6x+ Sx"!, T+ 2x—xare linearly dependent.
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5. In each part, determine whether the matrices are linearly in-
dependent or dependent.

@) 1 0 1 2 0 1] o
a s ; mn My
| 2 1 2 1
I 0 0 0 0 1 0 0 0]
(b) : : in M
0 0 0 0O 0 0 0O 1 0
a) For the matrices
1 0] 1 21 [0 1
, eM
[1 2]'[2 1]’{2 1} -
Linear independence
. 1 0 te 1 2 te o 1 |00
1 2 "2 1) "2 1) |o o
Expanding the eguaticn
1+ 9 2e0 + 03 B 0o 0
o +20+23 20,+ca+cy |00
the following system of equations:
cptea=0.....ciiiiiiininnnn. eql
2ot 3 =0.. . e eq2
cp+2ca+2c=0........00 ... eq3
b T v v e | eqd
from equation (1)
e = T eqh
put the value it in equation {2,3)
—ca+ 200+ 2c7 =10
ca+2c3=10
€3 = — 208, iinnnninnnnranrnannns eqh

put this in equation (2)

2(—2¢cy) +c3=0

—3cy =10

ca=10
from(E)}
co=10
from({&}
c1=20

vectors are linearly dependent
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6. Determine all values of k for which the following matrices are
linearly independent in M.

Y

Let 1:1[1 D] +cz[_1 ﬂ] +E3[3 y - [D D]
1 k E 1 2 14| 0 0
Thenc; — ¢y + 3y =0
¢y + ko + 2c3 =0
kcy + ¢+ 1d4cy =0
This is 2 homogeneous system of three equations in ¢y, Ca, Ca.

1 -1 3
The coefficient determinant of the systemis (1 k2.
E 1 14
1 -1 3
Now, [1 k  2|=1(14k —2)+1(14 — 2k) + 3(1 — k%)
ko1 14

=3k +12k+ 15
= —3(k—5)(k +1)

The given matrices are linearly independent if

1 -1 3
1 k 2|40
k1 14

ie., f —3(k—5)k+1)#0
ie., if k#-1,5
Hence the given matrices are linearly independent for all values of kexcept —1 and 5.
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7. Ineach part, determine whether the three vectors lie in a plane
in R,
(d) Y1 — (25 _21 0)1 Vo — (6$ 19 4)3 V3 — (21 01 _4)
(b) Vi — (_65 75 2)« V2 (3$ 23 4)3 V3 (41 _15 2)

+ Three vectors in R* are linearly independent if and only if they do not lie in the same
plane when they have their initial points at the origin. Otherwise at least one would
be a linear combination of the other two (Figure 4.3.4).

Explanation:

We know that If there are three vectors in a 3d-space and their scalar triple product is zero, then these three vectors are coplanar.

50,
(&) We have given the vectors vl = (2, —2,0), v2 = (6,1,4),v3 = (2,0, —4)
Taking the scalar tripple product,

2 -2 0
=6 1 4|=2x(-4-0)——-2x(—24—8)+0=-864=T72
2 0 —4

Hence the Scalar tripple product is not eguzl to zero. So the glven pelnts are net lle In same plane.

{b) We have given the vectors vl = (—6,7,2),v2 = (3,2,4),v3 = (4,-1,2)
Taking scalar tripple product,

-6 7 2
3 2 4= -6x(4+4)-Tx(6-16)+2x(-3-8) =-484+70—-22=10
4 -1 2

Here the zcalar tripple product is zero. Therefore the glven vectors lle In same plane.
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9. (a) Show that the three

General Vector Spaces

vectorsv; = (0, 3,1, —1).

v, = (6,0,5,1), and v; = (4, —7,1,3) form a lLinearly

dependent set in R*

(b) Express each vector
the other two.

in part (a) as a linear combination of

a. The vectors can be written as:
ky(0,3,1, 1) + k2(6,0,5,1) + ka(4, —7,1,3) = (0,0,0,0)
6 4

0
3 0 7|0
The augmented matrix is given by: .
1 5 1|0
-1 1 3|0

Applying Ry «» Ry,

1 5 1|0
|3 0 7|0
o o6 40
-11 3 |0
ApplyingRz + Ra —3Riand Ry + Re+ Ry
[1 5 1 1]
o —15 —wfo0
o6 4 o
lo 6 4 |0

Applying Ry — —%Rg and Ry — Ry — Ry,

=2 QL @ =
(=1~ U
(SRS
IGDGQ

Applying R —+ —2Ra+ Ra,

oo o
o 2 wo;m
S 2 =
e o oo

The equations become:
3ky+ 2kg =0
kg = — %kg;
And,
ki +5ka+ky=0
k — %k’s +k3=0

7
k= ks

Since the solution depends upon values of ks, therefore, the solution is non-trivial.
The vectors form z linearly dependent setin Bt

b.

Expressing vy as LC of vy and v,

kvi = —kova — kavg
ook, ko
T K
—3kg ky
T i
kg ks

_2V 3\'
—?2 73

Expressing va as LC of vy and va,

k ks
Vg = —k—2v1 k—gv-g
S LI T
—3k 3k
T3
= E1u1+ EV3

Expressing vg as LC of vy and va,

k 2
Vi=—7"Vi— 1"
ks 3
ks —3ky
=——¥V]— ———¥V3
ks ks
7 v+ 2 v
1 3 2
Explanation:

Use the relation kywvy + kevy + kevy = 0 to evaluate the linear combinations
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11. For which real values of A do the following vectors form a
linearly dependent set in R>?

m=0—3m3) w=(nkg) w=(-3-12%)

1 has been given the vectors

1 1
L | (A,EIE)
1 1
== (323)
1 1
vy (E’E"}')
Explanation:

Since we know that determinant of the linearly degendant vectors is 0
Then we must have

det|rgy v wy| =10

Step 2

Mo wie have obtained that

SR
det |3 A 3| =0
A
A 4 I EE 1+ A
’:"‘L : E? K IE? 1 0
7 A 3 A I 3
g 1 1A 1 1/1 A
”‘(A 4) 2(2 4)'2(4 2) 0
A 1
b R |
4 4
43° _3ap1=0
AN 1) - AAA ) (A1) =D
(A+1)(4A" —ax 1) =0
(As1)2a -1 =0
1
A 1, —
"3
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4.4 Coordinates and Basis

2. Use the method of Example 3 to show that the following set
of vectors forms a basis for R>.

[(3.1,-4). (2,5,6), (1,4, 8)]

let A =[u1 wuz wus]

3 2 1
A= 5 4}

4 6 8

2 1

Al=|1 5 4

—4 6 8
A| =3(40 — 24) — 2(8 + 16) + 1(6 + 20)
A| = 3(16) — 2(24) + 26
Al=26+£0

Hence given set of vectors is linearly independent.
And we know that any linearly independent set containing three vectors forms a basis of R®.
Hence set of vectors {(3,1, —4), (2, 5,6), (1,4,8)} forms basis of R*.
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4. Show that the following polynomials form a basis for P5.

I +x, 1 —x, l—xz, | —x

3
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5. Show that the following matrices form a basis for M»,.

3 6 0 -1 0 =8 1 0
3 6| |-l 0 —12 -4 -1 2

3 ¥

Explanation:

We know that if V be a vector space of dimension n over a field F then any linearly independent set of n vectors of Vis a basiz of V
5) Here we take the given matrices as a set of S that is

S:{E —ﬁﬁH—Ol _01}’{—012 :ZH—ll ﬂ }

Since we know that dimension of a matrix My, is mn so, here dimension of My, will be (2 x 2) =4
Also we see that S contains 4 matrix as vectors so it is enough to show that S is linearly independent and then it is clearly dimension of 5=4
Now we take the relation for some scalar ¢y, ¢q, €3, ¢4 as

3 6 N 0 -1 0 -8 1 0] [0 0
“Us 6| "1 0| P12 —4 T 1 2/ [0 0

3¢y 6By 0 —Ca 0 —8ec3 cy 0 _ 0 0
= [3(:1 —6(:1:| + ch 0 ] - {—1203 —4CJ * [—q 2':4} - {0 u}
N 3¢y 6c; — o N 0 —8cy i cy 0 _ 0 0

3c1 — o —bey —12¢3 —4des —0cs 204 0D 0
N 3e; + oy 6c; — ey — 8y B 0 0

301 — g — 12C3 — 4 —601 — 4‘:3 + 2C'4 B 0 0

Equating each elements from both side we get,

3c1+ca=0 ... (1} , 6ci—co—8ca=0 ... (2)
Jeg—ca—12c3—ca =0 .......(3)and —6cy —4dca+ 2c4 =0 ... (4)
Mow from (1), c4 = —3cy putting this into (2) we have ,

Jop—ca—12c3+3c1=0=6cy—co—12c3 =0 ...(5)
subtract (5) from (2} we get,
6ci—co—8Bcg— b+ o+ 12c3=0=4dca=0=c3 =10
so, from (4) we get, —6c1 + 2(—3c1) = 0= —12¢; = 0 = ¢; = 0 this shows thatcy = —3c; =0
and then from (2) we get, co =0
This shows that 5 is linearly independentascy = ca=ca=cs =0
and then dimension of 5 =4
Thus, by the above explanation we can say that S is a basis for Masa
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7. In each part, show that the set of vectors is not a basis for R*.

(@) {(2,=3.1), (4, 1,1),(0,=7. 1)}
(b) {(1.6,4), (2,4, 1), (—1,2.5)}

We have given that the set
1) {111 =(2,-3,1),u2 = (4,1,1),u3 = (0, -7, 1]}

To show given set is not basis for R3

any set is basis for vector space Vif it is linearily independent and spans V

Therefore, to determine linearily independent

Here, the vector us is linear combination ofu; and 4
ie (4,1,1) =2(2,-3,1) — (0,-7,1)

e s = 21y —uy
Therefore, given set is linearily dependent

Hence it is not basis

2) we have given that the set

{u1 =(1,6,4),us = (2,4,—1),uz = (1,2, 5]}
Here, the vector us is also linear combination of other two vectors mz

(2,4,-1) = (1,6,4) — (—1,2,5)
e 12 = u; — g

Therefore, given set is linearily dependent

Hence it is not basis for B2

and 1z
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8. Show that the following vectors do not form a basis for P.

] —3x +2x%, 14+x+4x3, 1—7x

Let vq, va, v3 be the vectors where vi = 1 — 3x + 2%, va=14+x+4x%andvs =1 — Tx.

Step 2

Now, we can write

1-7x=2(1-3x+2x) — (1 +x+ 4%

= Vg = 2V — Vo

Since the vector vg is a linear combination of the vectors vy and va , the set of vectors {Vh\fg?\fg} is not linearly independent and therefore the
vectors 1 — 3x + 2x2, 1+ x + 4x%and 1 — 7x do not form a basis for Py . [ Proved |
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9. Show that the following matrices do not form a basis for M»,.

1
1

o] [2 =21 [1 =1
{3 21 |1 o

Solution:

10 2 -2] [1 -1 0
The matrices are, s . '
L 1} {3 2 | L 0 } [1

The matrices are lingarly independent.

?

0 —I
I

A

o R e T A R A e B

On simplifying,

a+2b+c —2b—c—d| [0 O
L+36+c+d a+2b+d]_[0 0]
The equations are,

a+2b+c=0
—2b—c—d=0
a+3b+c+d=0
a+2b+d=0
1 2 1 0|0
0o -2 -1 —-1|0
The augmented matrix is
1 3 1 1|0
1 2 0 1|0
Rs=Rs — R4
2 1 0 | 0]
0 -2 -1 —-110
=
0 1 0 110
11 2 0 1|0}
Ri=Rs—Ry
2 1 0 | 0]
0 -2 -1 —-1|0
=
0 1 0 1|0
0 0 —1 1 |o0]
Ry=R3+ 2
(1 2 1 0 | 0]
0o -2 -1 -—-1|0
= 0 0 1 L 0
77
100 -1 1 | 0]
On simplifying,
Rs=Rs— 2R3
(1 2 1 0 | 07
0 -2 -1 -—-110
= 0 0 1 L 0
]
0 0 0 0 |0}

Here, taked = x

On substituting,
_0(3)* _

= 1 =

3
po OCUs (0@ _

a=0-0(x)— (1)x—2(—x) =x

—a—x,b=x,c=x,d=x

Therefore, the matrices are linearly dependent.

So, they do not form a basis for Mag .
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2

10. Let V be the space spanned by v; = cos” x, v, = sin’ X,

Vi = COS 2X.
(a) Show that § = {v;, v2, v3} 1s not a basis for V.
(b) Find a basis for V.

Let V be the space spanned by

2

vi= -::oszx, vy = sin“x and v3=cos2x

a) Observe that vy — va — vy = cos’x — sin’x — cos 2x

= cos’x — sin’x — (cos?‘x — sin® } .

= cos’x — sinx — cos’x + sin’x
=0

for allx € (—oo, 00) which gives us that the set S = {vy. vy, va} is a linearly dependent set on V and therefore S is not a basis for V.

b) Consider the set S’ = {v;, v3}
Take scalars a and b such that acos?x + bsin’x = 0 forall x € (—co,00) .

Taking x = 0, we have a = 0 and taking x = % we have b = 0.
Hence, the set §'is a linearly independent set in V.

Consider a vector f(x) = acos 2+bsin’x + cos2x € V
Since cos2x = cos?x — sin’x forallx € (—oo, 00) , we have
f(x) = acos’x + bsin’x + c(cos’ — siuzx}
= acos’x + bsin?x + ccos’x — csin’x
= (a 4+ c)cos’x + (b — ¢)sin’x
which gives us that f(x) £ span(Sﬂ) and therefore §' spans V.

Hence, S is a linearly independent set of V which spans V and therefore it is a basis for V.
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~ In Exercises 1-6, find a basis for the solution space of the ho-
mogeneous linear system, and find the dimension of that space.
<

S. x1—3x2+ X3=0
2x; —6x; + 2x3 =0
3.]71 —9x2+3x3=0

Remark It can be shown that for any homogeneous linear system, the method of the last example
always produces a basis for the solution space of the system. We omit the formal proof.
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7. In each part, find a basis for the given subspace of R’, and
state its dimension.

(a) The plane 3x — 2y + 5z = 0.

7. To find a basis for the given subspaces of B3
(@ Wy :Theplane3x — 2y + 5z =0
T

letv= [yl € W;
z
Jx —2y+5z=10
= 3x=2y— b5z

— X — 25 — bt
25 — bt 2 —b
V= 3s =s{31 +t{ 0
3t 0 3

Explanation:

The dimension of a subspace is equal to the number of vectors in its basis.

. The dimension of W; = 2
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8. In each part, find a basis for the given subspace of R*, and
state its dimension.

(a) All vectors of the form (a, b, ¢, 0).

(b) All vectors of the form (a, b, ¢, d), where d = a + b and
c=a—b.

(c) All vectors of the form (a, b, ¢, d), wherea = b = ¢ = d.
A)
Let subspace A = {(a, b,c,0)}
= A ={a(1,0,0,0) +b(0,1,0,0) +¢(0,0,1,0)}
this is subspace spanned by these vectors
{(1,0,0,0),(0,1,0,0),(0,0,1,0)}
Therefore, dimension of A is 2.

Explanation:

Since, number of unknows (a, b, c)

Step 2

B)

Let B = {(a,b,c,d) :d =a+b,c=a—b}
—d=a+b,c=a—b

(a,b,c,d) = (a,b,a — b,a + b)

—a(1,0,1,1) + b(0,1,-1,1)

subspace spanned by {(1,0,1,1),(0,1,—-1,1)}
dim of B = number of unknows (a, b) = 2.

Q)

Let C = {(,b,c,d) :a=b=c=d}

— (a,b,c,d) = (a,a,a,a) = a(1,1,1,1)
= Subspace spanned by {(1,1,1,1)}
and dim (C) =1

Explanation:

Since, dim of ¢ = number of unknowns (a) = 1.
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12. Find a standard basis vector for R? that can be added to the
set {vi, v»} to produce a basis for R*.
(a) vi = (—=1,2,3), vo = (1, =2, -=2)

(b) v, = (1, —1,0), v, = (3,1, =2)

THEOREM 4.5.5 Let S be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.

#(a)

We have given that,
v =(—1,2,3)

ve =(1,-2,-2)
let,

vy = (a,b,c)

we need to find a vector in standard basis of B350 that
when added to the set  {v;, v,}it form a basis for R".

MNow , we form an augmented matrix as,

-1 1 a
2 -2 b
3 -2 e

We now reduce this augmented matrix to row reduce echelon form by using elementary row operation
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Multiply each element of Ry by —1 to make theentryat1,1a 1.
1 -1 —a
2 -2 b
3 -2 ¢

Perform the row operation R = Rs — 2R to make the entryat 2,1a 0.
1 -1 —a
0 0 b+2a
3 -2 c

Perform the row operation Rg = Ry — 3R to make the entryat3,1a0.
1 -1 —a
0 0 b+2a
0 1 c¢+3a

Swap Ra with Ra to put a nonzero entry at 2,2 .

1 -1 —a
0 1 e+ 3a
0 0 b+2a

So these vectors are linearly independent if and only if,
b+2a#0
b # —2a

so let,

a=0

b=1

c=0

Then we get,

vy = (0,1,0)

So now ,

{v1,v9,vs} will form a basis for R®.
S0 we get,

vz = (0,1,0)
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#2)

We have given that,

vy = (1,-1,0)
vo=(3,1,-2)
MNow let,

va = (a,b,c)

we form an augmented Matrix as,

1 3 a
-1 1 b
0 -2 e

We now reduce this augmented matrix to row reduce echelon form by using elementary row operations.

Perform the row operation Ra = Rs + Ry to make the entryat2,1a0.

1 3 a
0 4 b+a
o -2 C

Multiply each element of Ry by % to make theentryat2,2a 1.

1 3 a
b+

0 1 I

0o -2 C

Perform the row operation R3 = Ra + 2Rs to make the entryat 3,2a 0.

1 3 a
b+
0 1 =

2etbta
0 0 2cibia
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So these vectors are linearly independent if and only if,

2c4+b+a
2

£0
S0 we get,

2c+b+a+0

We can choose
a=1
b=0
c=0
So,

V3= (1:. 0, ﬂ}

Hence,

{v1,v9,v3} isa basis of R,
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14. Let {v,. v, vz} be a basis for a vector space V. Show that
{uy, up, uz} 1s also a basis, where u; = v;, u» = v; + v, and
U3 = V| + vy, 4+ v3.

1. Linear Independence:

cily + csug + cguz = 0
c1vy + co(vi+va) +ca(vi +va+vy) =0
(cy +ca+c3)vy+ (ca+ c3)vo+ vy =0

Since {vh va, vg} is a basis of V soitis linearly independent.
Hence we have

(C1+CQ+C3:}=|}
CQ-I—CE}ZE'

CEZI}

Putting cz = 0 in equation 2 we have ca = 0

putting c2 = c3 = 0 in equation 1 we havecy =0
Hencecp=ca=c3 =10

Therefare, {ul, 2, u3} is linearly independent and hence a basis.
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15. The vectors vi = (1, =2, 3) and v, = (0, 5, —3) are linearly
independent. Enlarge {v,, v,} to a basis for R*.

Given vectors :
vi= (1, —2,3}
Vy = {0, 5, —3}

These vectors are linearly independent.

Motive: We want to enlarge {vy, va} to a basis for R3.

Explanation:

To enlarge the set {v;, vz} to a basis for R¥, we need to add one more vector that is linearly independent of {vy, va}.

Let's find such a vector:

Let's call the new vector va = (a, b, ¢). We want va to be linearly independent of vi and  w2. This means that the determinant of the matrix

formed by these vectors should be nonzero.

S0,

1 -2 3

0 5 -3|#0
a b c

= 1(5¢ + 3b) — 0(—2c — 3b) +a(6 — 15) £ 0
= —9a+3b+5c#0

Mow, we can choose any values for a, b, and c that satisfy this condition.
Let's arbitrarily choosea=1,b=0 and c=1
so, vg = (1,0,1)

Mow, {vl, va, vs} forms a basis for R because it is a set of three linearly independent vectors in R3.
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16. The vectors vi = (1,0,0,0) and v, = (1, 1, 0, 0) are linearly
independent. Enlarge {v|, v,} to a basis for R*.
Step 1

The given vectors are vy = (1,0,0,0) and w2 = (1,1,0,0) are linearly independent vectors.

Consider the vectors in matrix form

== == R == I ]
= 0 e e

here pivot 11s in the first and second column

Step 2

therefore we add a third and fourth elements of the standard basis in the set {vh vg} in order to obtain a basis of B*

Step 1 ~
The third vector, v3, can be (0,0,1,0)

Explanation:

This vector is linearly independent from v1 and v2 because it has a non-zero entry in a position where both v1 and v2 have zeros.

Step 2 & ]

The fourth vector, v4, can be (0,0,0,1)

Explanatlon:

This vector is linearly independent from v1, ¥2, and v3 because it has a nen-zero entry in a position where all the other vectors have zeros.
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17. Find a basis for the subspace of R? that is spanned by the
vectors

vi=(1,0,0), va=(1,0,1), wvy=1(2,0,1), vy=1(0,0,-1)
Step 1
iven vectors:

Vi = |[1,EI,£I}.I Vg = {l.llJ, 1), vz = {E,D?l].. vy = {l}, 0, —1}
The aim is to find the basis.

First, write the vectors in matrix form.

1 1 2 0

0O 0 0 0O

01 1 —1
[ Step 2

[1 1 2 0]

O o0 0 0

o1 1 -1

Swap Ra with Ra to put a nonzero entry at 2,2

11 2 0
0011 -1
00 0 o]

Perform the row operation Ry = Ry — Rato make theentryat 1,22 0

1 01 1
01 1 -1
00 0 0

Here rank of the matrix is 2 and only two pivot elements are there.
So, the basis = {vy, va}

Explanation:

Get the basis by using the reduced row echelon form of the matrix.

The basis is {v; = (1,0,0),v, = (1,0,1)}
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4.6 Change of Basis
3. Consider the bases B = {u;, uy, w3} and B’ = {u, v}, u}} for
R?, where

2 2 1

w= 1], m=|-1], ;z=1]2
_l 1 1
[ 3 1 -1

u) = L], u)= L, ufj= 0
_—5 -3 2

(a) Find the transition matrix B to B’
(b) Compute the coordinate vector [w]p, where
-5
W= 8
-5
and use (12) to compute [w]p.

(¢) Check your work by computing [w]gs directly.

Pg_p=[[ujlz | [w)p |- | u,]z] Ppp =[[wlp [ [wlp |- | [u,]p]
[new basis | old basis] row operstions [/ | transition from old to new]
(a).
The given basis is B = {u,u,us}
2 2 1
u; = (1f{,ma = |—1f{,uz = |2
1 1 1
The given basis is B' = {u;,u;, u3}
[ 3 1 -1
m={1luw={1}u=10
5 -3 2
Now we find the transition matrix(Ty ) from B to B by this
[B'[B] = 1| Tu]
3 1 1|2 2 1

1 1 0|1 -1 2
-5 -3 2|1 1 1
By row reduce echelon form we get

1 0 0] 1 % %
= |0 1 0] -1 % —%
oo 1({1 2 1
Therefore the transition matrix from B to B’ is
1 3 3
14
1 2 1
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(k).
The given basis is B = {u;, s, ua}

2 2 1
u = (1j,ua = {—-1},u3= |2
1 1 1
‘We have to find the corresponding coordinate vector [W']ﬁ. W = | 8 | | claim that the coordinate vector entries X, X2, X3 Satisfies thr following
-5
criterion.
Then,
2 2 1 -5
|1 +xa|—1f +xa{2{ =18
1 1 1 -5
2 2 1|-5 2 2 1 —5
=11 -1 2| 8| ~fo 4 3| af g bl
1 1 1|-5 00 -1 5
= X3= -5
= dxy —3Jx3=-21=x=-9
22042+ 1lxg=5=x1=9
Therefore the coordinate vectors are [W]g = (9, -9, —5)
(c).
The given basis is B = {u}, u), u}}
3 1 -1
w=11fu={1f{uw=]0
-5 -3 2
—5
We have to find the corresponding coordinate vector [W]ﬂ.. W = | 8 | |claimthatthe coordinate vector entries x;, X2, x3 Satisfies thr
—5
following criterion.
Then,
3 1 -1 -5
x| 1 +xh|1{4x]0]=1]8
-5 -3 2 -5
3 1 -1|-5 3 1 -1| -5 31 -1|-5
1 1 o0 |s8f=|o 2 1|2 [{Eq¥P™=1o 2 1 |29|Ry=2Ry+Ry
-5 -3 2 |-5 0 —4 1 | -40 0 0 3 |18
= 3xp =18 =x, =16
=2 +xp=20=xh =32
= 3x)] +xp-xp=-5=x]=—3F
Therefore the coordinate vectors are [W']ﬁ, = I:—-E, _2;_ , ﬁ}
(c).
Now we check the coordinate vector of [W] g directly
That,
3x] + x5 —x3=-5
x] +xp —0xy =8
—5x} —3xh + 2xy = -5
Now we check the coordinate vectors are [W]g = — 3, 321,6)

Here,xj = — 2, xb = 3 ,x3=6
Therefore we clearly see that the coordinate vectors are satisfies these three equations.

Explanation:

Simply Put the value of variable on left hand side and get  R. H. 5. And satisfies this.
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12. If By, B>, and B; are bases for R2, and if

3 1 7 2
PB]—:rBz = 5 1 and PBZ—>B3 =

then Pp,—.p, =
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13. If P is the transition matrix from a basis B’ to a basis B, and
Q 1s the transition matrix from B to a basis C, what is the
transition matrix from B’ to C? What is the transition matrix
from C to B’?

Glven: If P is the transition matrix from a basis B' to a basis B, and @ is the transition matrix from B to a basis € , what is the transition matrix from B*
to € 7 what is the transition matrix from Cto B' ?

Solution:

Let's denote the following:

= Pis the transition matrix from basis B’ to basis B.
» () is the transition matrix from basis B to basis C.

Explanation:

‘We need to find:
1. The tranzition matrix from B' to C.
2. The transition matrix from Cto B”.

1. Transition Matrix from B to C
To find the transition matrix from B’ to C, we need to combine the transition from B’ to B [given by P} and the transition from B to C [given by Q).

The transition matrix from B’ to C is obtained by multiplying Q and P :

R=QP

where R is the transition matrix from B'to C.

2. Transition Matrix from C to B'
To find the transition matrix from C to B', we need to consider the inverse of the transition matrices in reverse order.

First, let's find the inverse of @ which transitions from Cto B :

Q 1

Mext, find the inverse of P which transitions from B to B :

P 1

The transition matrix from C to B'is then the product of these inverses:

s—plQ!

where 8§ is the transition matrix from C to B".
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4.7 Row Space, Column Space, and Null Space

13. (a) Use the methods of Examples 6 and 7 to find bases for the
row space and column space of the matrix

[ 1 =2 5 0 3“
2 5 -7 0 —6
= 3 2 1 -3

8 9

=S 25 o

(b) Use the method of Example 9 to find a basis for the row
space of A that consists entirely of row vectors of A.

THEOREM 4.7.4  Elementary row operations do not change the row space of a matrix.

THEOREM 4.7.6 If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if the corre-

sponding column vectors of B are linearly independent.

(b)

A given set of column vectors of A forms a basis for the column space of A if and

only if the corresponding column vectors of B form a basis for the column space

of B.

The given matrixis A =

Lets find the row echel:}n-f-::rm

Performing the row operation R = R, + 2R,
1 -2 5 3 |
0 1 3

== o O
=
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Performing the row operation Rs = Rg + Ry
1 -2 5 0 3

0 1 3 0 0
0 1 3 1 0
-3 8 -9 1 -9

Performing the row operation Ry = R4 + 3R,

1 -2 5 0 3
0 1 3 00
0 1 3 10
0 2 6 1 0

Performing the row operation R3 = Rs — Ra

1 —2 5 0 3
0 1 3 00
00 010
0 2 6 1 0

Performing the row operation Ry = Ry — 2Ry

1 -2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 1 0

Performing the row operation Ry = Ry — R

1 -2 5 0 3
0 1 3 00
0 0 0 1 0
0 0 0 00
P-erforming the row operation Ry = R; + 2R,
1 0 11 0 3
01 3 00
00 0 1 0
0 0 0 0 0

The column space is a space spanned by the columns of the initial matrix that correspond to the pivot columns of the reduced matrix.

1 —2 1]
) —2 5 0
Thus, the column space is b ls bl (answer)
-3 8 1
b) Now basis for the row space is the span of row space
1 0 0
1 0
Hence basis for the row space=span| |11|, |3|, |0 (answer)
0 0 1
3 0 0
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b-Solution We will transpose A, thereby converting the row space of 4 into the column
space of AT; then we will find a basis for the column
space of AT ; and then we will transpose again to convert column vectors back to row
vectors.
Transposing A yields
1 -2-1-3
-25 3 8
5 —7-2-9
0011
3 —6-3-0

AT =

and then reducing this matrix to row echelon form we obtain

Row echelon form

Given matrix

1 -2 -1 -3

-2 5 3 8

7.2 -9

0011
3.6 -3 -9 Ry — Ry-3I xR,
Ry—Ry+2xR 1 -2 -1 -3
REREL 01 1 2
' =loo0o 0 0

=l 5§ -7 -2 -%
o0 1 1 00 1 1
63 s 00 0 O

1-2-1-3
o1 1 2
=l 0 3 3 &

=]
L
-
=

(=T == B

-3

-

After interchanging rows X; < R,
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The first, second, and third columns contain the leading 1’s, so the corresponding

column vectors in AT form a basis for the column space of AT ; these are

1 —2 —1

—2 5 3

cq4 = 5 L2 = —7 L3 = —2
0 0 1

3 6 3

Transposing again and adjusting the notation appropriately yields the basis vectors
r1=[1-2503}, r2=[-25-70-6],r3=[-13-21-3]

for the row space of A
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In Exercises 14-15, find a basis for the subspace of R* that is
spanned by the given vectors.

15. (1,1,0,0), (0,0,1,1), (=2,0,2,2), (0, —3,0,3)

Consider the matrix A wit given vectors as the columns.

10 -2 0
10 0 -3
A=1lo 1 2 o
01 2 3

Find the row echelon form

Perform the row operation Rs = Rs — R to make the entryat 2,1a 0.

1 0 -2 0
o0 2 -3
01 2 0
01 2 3

Swap Rz with Ra to put a nonzero entry at 2, 2.

10 —2 0]
01 2 0
00 2 -3
01 2 3

Perform the row operation Ry = Ry — Rato make the entry at 4,2 a 0.

10 —2 0]
01 2 0
00 2 -3
00 0 3

Multiply each element of Rg by % to make the entryat 3,3 a 1.

1 0 -2 0
01 2 0
00 1 —3
00 0 3

Multiply each element of Ry by % to make the entry at 4,4 a 1.

10 -2 0
01 2 0
00 1 -3
00 0 1

The leading 1's are in all four columns.
Hence, all four columns are pivot columns.
Therefore, the basis for subspace * which is spanned by the given vectors is the set of all given four vectors.

i.e. abasisis {(1,1,0,0),(0,0,1,1),(-2,0,2,2),(0,—-3,0,3)}.
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In Exericses 16-17, find a subset of the given vectors that forms
a basis for the space spanned by those vectors, and then express
each vector that is not in the basis as a linear combination of the
basis vectors.

16. vy = (1,0,1,1), v, = (—3,3,7, 1),
V3 = (_1! 3! 9! 3): V4 = (_51 31 51 _]-)

16)
Given vectors:

v1=(1,0,1,1), v»=(-3,3,7,1), va=(-1,3,9,3), va=(-5,3,5,-1)

we will put these vectors into 2 matrix and row reduce to find the basis.

1 01 1
3137 1
1 3 9 3
5 3 5 1

Perform the row ocperation Ra = Re + 3R, .

1 0 1 17
D 3 10 4
a 13 9 3
-5 32 5 -1

1 0 1 17

D 3 10 4
"o 3 1w 4

5 3 5 -1

Perform the row cperation Re = Ry 4+ 5By .
1 0 1 1
0 31 10 4
0 31 10 4
01 10 4

Multiply each element of Ry by 4 .
1 0 1 1

1
01 5
0 3 10
0 3 10

[ N P

Perform the row operation Ry = Ry — 3Ra.

1 0 1 17
01 ¥ 4
_ T 13
oo 0 0
0 3 10 4]

Perform the row operation By = Ry — IR .

1 0 1 17
1l 4
_ 01 5 7
o0 0 0
o0 0 0

\Wa se= that tha third and fourth vactars 2re linsarly dependent on the first and second vectars. So, the vactors vy and vg form 2 basiz forthe space
spanned by the given wectars.

Mow, let's exprazs vy and vy a5 [near combinations of vy and v ¢

Forwvs:

vy=(-1,3,93) = 2{1,0,1,1) + 1(—3,3,7,1)

Forwy:

vy=(-513,5-1)=-2(1.0,1,1) + 1{-3,3,7,1)



17. Y1
V3
Vs

17)
Givenoyy = (1, -1,5,2), va=(
and row reduce to find the basis.
1 1 5 2
2 3 1 0

4 -5 0 4

3
B
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2,3.1,0), va= (4,

(1, -1,5,2), v» =

(4,-5,9,4), vs
(—=7,18,2,—8)

Perform the row cperation Ra = Ra + 2R, .

[1
0
= | 4
0

1

5
11

2

Perform the row cperation Ry = Ry — 4R, .

[1
0
=|0
0

ki

1

4
18

5

11
11

2
2

2
-+

Perform the row cperation By = Ry + TR, .

1

1
1

1
4

11

5
11

11

2
T

2

4
1
[

Perform the row operation Ry = Ry + Ra .

1

1
1
0
4

11

5
11
0
2
v

2
4
0
3
[

Perform the row cperation By = By — 4Ra.

1

1
1
0
0

11

5
11

0

42
T

2
4
0
19
fi

Perform the row cperation Bs = Rs

1

1

[—1 — N — R ]

5

11
0
42
B4

2
4
0
19
18 |

11R=.

Swap Ry with Rato put 2 nonzero entry 2t 3, 3.

1

1

[—1 — I — ]

5

11
42
0
B4

2
4
19
0
18 |

(—2,3,1,0),
(0,4,2, —3),

5,9,4), vo— (0,4,2, - 3), v; = (- 7,18,2,

B)we will put these vectors into & matrix
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Multiply each element of Ra by 115 .

1 1 5 2 7
] 1 11 4
1%
~lo 0o 1 2
00 0 0
0 0 B4 38

Perform the row operation R; = Ry + B4Ry .

1 1 A& 27

0 1 11 4

10

= |0 0 1 Tl
0 o ] 1]
_ﬂ 0 ] ﬂ_

Perform the row operation Ra = R — 11Rs .

1 1 5 27
01 0 5
19
=0 0 1 o
o 0 0 0O
o0 0 0 0 |

Perform the row cperation By = R, — 5Ry.
1 1 1
42
a1
T

0
0
1
0
0

| —I — I — B —
e R e T e [ 1}
o oalz

Perform the row operation By = By + Ba.

1 0 0 5]
010 I
=10 01 5§
000 o
000 0

We see that the first two vectors form a basis for the space spanned by the given vectors
Mow, let's express va and v as linear combinations of vy, vo and vy

Forwy

vi=(4,-5094) =2(1,-1,5,2) - 1(-2,3,1,0) + 0{D, 4,2, -3)

Forwvs :

vy = (7,182, —B) = —1(1,-1,5,2) + 3(—2,3,1,0) + 2(0,4,2,-3)



CHAPTER 4: General Vector Spaces

4.8 Rank, Nullity, and the Fundamental Matrix Spaces

In Exercises 1-2, find the rank and nullity of the matrix A by
reducing it to row echelon form.

1 2 -1 1
2 4 =2 2
1. (a) A=
3 6 -3 3
(4 8 —4 4
1 -2 2 3 —1
by A=|-3 6 —1 1 —7
| 2 -4 5 8§ —4

THEOREM 4.8.2 Dimension Theorem for Matrices

If A is a matrix with n columns, then

rank(A) + nullity(A) = n

1) a) Apply the row operation on the matrix as follows:

1 2 -1 1 1 2 -1 1
2 4 -2 2 0O 0 0 0
26 -3 3 = 0 0 0 0 E)z{—EJZ—QRI_.Rs‘{—Rs——?le,R_i{—R4—4R1
4 8 -4 4 0 0 0 0

Since the row echelon form of A contain 1 nonzero row so rank(A) = 1 and nullity(A) = 4 — 1 = 3 (since A has 4 columns) [
nullity(A) + rank(A) =41
b} Apply the row operation on the matrix as follows:

1 -2 2 3 - 1 -2
[—36—11—7}:00
2 4 5 8 A4 0
1
0
0

3 -1
10 —10:|R2<—R2+3H1,H3{—R3—2XR1
2 -2

|
[
=TT C R

3 -1
R,
2 —2|Ry+ —,Rs« Rs— Ry
0 0
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7. In each part, find the largest possible value for the rank of A
and the smallest possible value for the nullity of A.

(a) Ai1s4 x4 (b)y Ais3 x5 (c) Ais5x3
rank(A) < min(m, n)
in which min(m, n) is the minimum of m and n.

Aisd x 4

Fora4 x 4 matrix A | the largest possible value for the rank of A is 4, which means all four rows or columns are linearly independent,

Explanatlon:

We know that:

The rank of a matrix is the number of linearly independent rows or columns. So, the largest possible value for the rank of an mxn matrix is
min (m,n) .

The smallest possible value for the nullity of A is 0, indicating that the null space is empty.

Aicd x5

Fora 3 x 5 matrix A , the largest possible value for the rank of A is min (3,5) = 3, which means 3 rows or columns are linearly independent.

MNow, According to the Rank-Nullity Theorem,

rank(A) + nullity(A) = number of celumns in A .

smallest possible value for the nullity of the matrix A = 5 — rank(A)
=5-3
=2

Aisbx 3

Forab x 3 matrix A , the largest possible value for the rank of A is min (5,3) = 3, which means 3 rows or columns are linearly independent.

MNow, According to the Rank-Mullity Thearem,

rank(A) + nullity(A) = number of columns in A .

smallest possible value for the nullity of the matrix A = 3 — rank(A)
=3-3

=0
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15. Are there values of r and s for which

B

0
0
0

0
r—2
s —1

0

0
2
r+2
3

has rank 1? Has rank 2? If so, find those values.

Solution: Given matrix,

1 0 0
0 r—2 2
0 s—1 r+2
0 0 3

We know that rank of matrix is commaon dimension of row space and column space of matrix.
Let us suppose T = 2,5 = 1 then matrix is,

10 0
00 Let's apply some cperations,
00 4
0 0 3
Ry Ry 3R
[1 0 0]
.10 0 2
1o o0 4
0 0 0
Now, Rz — %
(1 0 0]
B 0 0 2
1o 0 1
[0 0 0]
Mow Rz — Rsg — [;3
(1 0 0]
B 0 0 2
“lo 0 0
0 0 0]
Ry — 2
[1 0 0]
= g g ! Rank is 2.
0 0 0

RanlE can not Eae 1.
fr=2ands = 1then
rank = 2
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19. (a) If A is a 3 x 5 matrix, then the number of leading I's in
the reduced row echelon form of Aisatmost |

Why?
(b) If A is a 3 x 5 matrix, then the number of parameters in

the general solutionof Ax = Oisatmost ___ . Why?

(¢c) If A is a 5 x 3 matrix, then the number of leading I's in
the reduced row echelon form of A is at most
Why?

(d) If A is a 5 x 3 matrix, then the number of parameters in
the general solutionof Ax = Oisatmost ___ . Why?

The proof of Theorem 4.8.1
shows that the rank of A can
be interpreted as the number
of leading 1I's in any row eche-
lon form of A.

THEOREM 4.8.3 [If A is an m X n matrix, then
(a) rank(A) = the number of leading variables in the general solution of Ax = 0.

(by nullity(A) = the number of parameters in the general solution of Ax = 0.

a)

Answerls 3

Explanation:

Reason:- There are 3 row in given matrix A and number of rows is less than number of columns

o)
Answerls 5

Reason:- There are 5 columns in given matrix A

]

Answerls 3

Reason:- There are at most three columns can be povot columns
d)

Answerls 3

Reason:- There are 3 columns in given matrix A
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21. Let A be a 5 x 7 matrix with rank 4.

(a) What is the dimension of the solution space of Ax = 07?
(b) Is Ax = b consistent for all vectors b in R>? Explain.

(&) The dimension of the solution space of Ax = 0is equal to the difference between the number of columns in matrix A and its rank.

Dimension of solution space = Number of columns - Rank

In this case, Aisa b = T matrix with rank 4.

Dimension of solution space = Number of columns - Rank
Dimension of solution space=7 — 4 =3

So, the dimension of the solution space of Ax = 01 3.

THEOREM 4.8.9 Let A be an m x n matrix.

(a) (Overdetermined Case). If m > n, then the linear system Ax = b is inconsistent
for at least one vector b in R".

(b) (Underdetermined Case). If m < n, then for each vectorbin R™ the linear system
Ax = b is either inconsistent or has infinitely many solutions.

(b) Mo, there is not a solution for Ax = b for all vectors b in R5. In fact, since the matrix A has rank 4, it means that its row space (the space
spanned by the rows of A) is of dimension 4.

The row space of A is a subspace of R (since A is a 57 matrix), and its dimension is 4.

This means that the eguation Ax = b can be consistent (i.e., have a solution) only if b lies in the row space of A, which is a subspace of R with
dimension 4.

Therefore, there are many vectors in R? that are not in the row space of A, and for those vectors, the equation Ax = b does not have a solution.
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In Exercises 17-18, find ||u|| and d (u, v) relative to the weighted
Euclidean inner product (u, v) = 2u,v; + 3u,v, on R2.

1. u=(—1,2)andv = (2,5)

DEFINITION 2 If V is areal inner product space, then the norm (or length) of a vector
vin V is denoted by ||v|| and is defined by

vl = +/{v, ¥)

and the distance between two vectors is denoted by d(u, v) and is defined by

d(u,v) = lu—v[| =/ (u—v,u—v)

A vector of norm 1 is called a unit vector.

For the given vectoru = (—1,2)

I[ul] = v2(=1)(=1) + 3(2)(2)
[u]| = vV2+12 =14

(ii) Distance (d(u, v)) :

The distance between two vectorsu and v in this inner product space is given by the norm of their difference.
d(u,v) = [[u—v]|

Forthe given vectorsu = (—1,2) and v = (2,5):

n—v=(-1-2,2-5)=(-3,-3)

d(u,v) =[|-3 -3

= /2(-3)(-3) +3(-3)(-3)
d(u,v) = +/18 + 27 = V45 = 3/5.
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In Exercises 19-20. find ||p|| and d (p. q) relative to the standard
mner product on P;.

20. p= —5+2x+x2 q=3+4+2x —4x?

As one know that, ||p|| = +/< p,p > and d(p,q) = ||p — g

Foranyp —a+bx + cx®and q = d + ex + fx?, standard inner product can be given by,
< p,q > =ad + be +cf
For given p,

<p,p>=(-57+2°+(1)
—254+4+1
—929

Therefore, ||p|| = < p,p > = v20.

Mareover,

p—q= (—5+21+x2} — (3+2x—4x2)
= —8+5x°

Therefore, to find d(p, q) , let first find < p —q,p —q >

<p-q,p—q>=(-8)+(5)]
64+ 25
80

So, d(p, q) can be calculated as,

d(ip—a)=|p—d
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In Exercises 27-28, suppose that u, v, and w are vectors in an
inner product space such that

(u,v) =2, (v,w)=—6, (u,w)= -3
lull =1, vl = 2, [w|| =7

Evaluate the given expression.

27. (a) (2v — w, 3u + 2w) (b) [lu+ V]|

To evaluate(2v — w, 3u + 2w) use the distributive property of the dot product and then substitute the given values.

= (2v — w,3u + 2w)

= (2v,3u+ 2w) — (w,3u + 2w)

= (2v,3u) + (2v,2w) — (w,3u) — (w,2w)
— 6vu) + Alviw) — Bwa) — 2(ww)

Substitute the values then

— 6(u,v) + 4(v,w) — 3(u,w) — 2||w]||*
—6x2+4x(—6)—3x(-3)—2x7
=12-24+9-08
=21-122

(2v —w,3u+2w) = —101

(b) Find ||u + v||.

Explanation:

To evaluate ||u + v||, use the definition of the norm and substitute the given values

Ju+v|| = \/{u +v,u+v)

= \/{u,u—i—v} + {v,u+v)

S R S

— VIl + (v + (0, v) + [[v]?
=vV1+2+2+4=
B

-+ =3
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In Exercises 33-34, let u = (1, ur, u3) and v= (v, vy, 13).
Show that the expression does not define an inner product on R?,
and list all inner product axioms that fail to hold.

33. (u,v) = u%v% + u%v% + u%v%
34. (u,v) = uv; — UV + Usv;
Letu = (uy,ug,u3),v = (v1,ve,v3) and w = (wy, Ws2,W3).

Explanatlon:

The inner product { , ) satisfies the properties :

(1) Linearity : (au + bv, w) = a(u, w) + b{v,w)

(2) Symmetry : (u,v) = (v,u)

(3) Posltive definite: (u,u) >0 and (wu)=0<u=0

33. (u,v) =udvi+udvi+udi L. (i)

(1) Linearlty : Let a,b € R.. For any three vectors u, v, w € R®,

au + bv = a(uy, us,uz) + b(vy, va, v3) = (au; + bvy, auy + bvy, aus, bvy)
= (au+ bv,w) = (au; + bv,)’w? + (au, + bvy)’w2 + (aug + bvs) w2

and

a(u,w) + b(v,w) = a(uiw] + uiw3 + uiw3) + b(viw] + viw3 + viw3)

= a(u,w) + b(v,w) = (au] + bvi)w] + (au3 + bvi)w3 + (auj + bvi)w3

Therefore, (au + bv, w) = a(u, w) + b{v,w) if

(au; +bvy)*w? + (auz + bve)*w? + (aug + bvs) w2 = (au? + bv?)w? + (au? + bv})w2 + (au + bvi)w?
ie. if (au; + bv;)® = au? + bv?, where i = 1,2,3

which is not true in general.

Hence (i) doesn't define an inner product on R3.

(2) Symmetry :
(1) = v 4 uvd il = () = viud + viud + viug
= {11,1-"} = {V,]l)

(i} satisfies the symmetry property.

(3) Positive definite :

(u,u) = uiud + uluj + uiuj
= (u,u) = 211% + 211% + 2u§ =0 (.. sum of square of real numbers is always non-negative)

Also (u,u) = 0 < 2uf + 2ul +2ul =0
suitui+ui=0<u,=0u=0u;=0
su=>0

Hence, (u,u) >0 and (u,u)=0<u=0
Therefore, (i) satisfies the positive definite property.
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34, (4, V) =uivy —Usve +UsVi e (ii)

(1) Linearlty : Leta,b € R . Forany three vectorsu, v, w € R¥

= (au + bv,w) = (au; + bvy)w; — (auy + bvy)ws + (aug + bvs)ws
= (au + bv,w) = a(uywy — uswa + ugws) + b(viwy — vawa + vaws)
= (au + bv,w) = a(u,w) + b(v,w)

Hence, (ii) satisfies the linear property.

(2] Symmetry :

(u,v) = wyvy +ugve + uzvy

= (U, V) = viu; — Vally + Vaug

= (u,v) = (v,u)

Hence, (ii) satisfies the symmetric property.

(3) Posltive definlte :

(u,u) = uyu; — Uslls + uUzly

= (u,u) = uf —uj +uj

Hence, (1, 1) need not to be non-negative.,

For example : Takeu = (1,2, 1)

= (u)=12-224+12=1-4+1=-2<0

Hence, (ii) doesn't satisfies the positive definite property.
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6.2 Angle and Orthogonality in Inner Product Spaces

In Exercises 34, find the cosine of the angle between the vec-
tors with respect to the standard inner product on Ps.

3.p=—14+5x+2x2 q=2+4x — 97

4.p=x—x2, q=7+3x +3x?

the average inner product on p2.

3 p=1+5x+2x2,q=2+4x— 9x2

The fact that

=p,q=

[Pl llal|

< pq> =< (—1+5x+ 2x7), (2 + 4x + 9x°)
= (—1x2) + (5x4) + (—18)

sin (0) =

=—-2+20-18
<pq>==>0
lpll =v<p,p>
=v1+25+4
=30
lall =v<a,qa>
=V4+16+81
— /101
cocosf = #
Vv/30./101
cosfl =10
8 = cos '0
g —=10°

the average inner product on p2.
4p=x—x2,q=T+3Ix+ 3x2
= P,q =

cosf@ =
pll- [lal|

<x—x5,T+3x+3x*>

V<x—xx—x2>,/7T+3x+3x% 7+ 3x + 3x2

0+3-3
Vv2.4/67
—0

6 =9"
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In Exercises 7-8, determine whether the vectors are orthogonal
with respect to the Euclidean inner product.

T.(a) u=(—1,3,2), v=(4,2,—1)
b)yu=(-2,-2,-2), v=1(1,1,1)
(¢c) u=(a,b), v=(—b,a)

DEFINITION 1 Two vectors u and v in an inner product space V called orthogonal if
(u,v) = 0.

Two vectors u and v are orthogonal if inner preduct of vector uy =0

Que A)

u= (_15352} WV = (4321_1}
UV = 1UyVy + UgVo + UsVy

= (-1)(4) + (3)(2) + (2)(-1)
— 4462

—6-6

~0

Since the dot product is equal to zero the vectors are orthogonal
Glue B)

u=(-2,-2,-2) and v=(1,1,1)

wv = (~2)(1) + (-2)(1) + (-2)(1)
=-2-2_-2
~ 6

Dot product is not equal zero
Therefore the vectors are not orthogonal

Que C)

u=(a,b) and v=(-b,a)

1.V =11Vy + UaVa

= (a)(—b) + (b)(a)

= —ab + ba

=0
Since the dot product is equal to zero
The vectors are orthogonal
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In Exercises 11-12, show that the matrices are orthogonal with
respect to the standard inner product on M»,.

5 -1 1 3
12. U = , V=
2 =2 -1 0

To show that two matrices are orthogonal concerning the standard inner product on Mas, we need to verify if their inner product is zero.
The standard inner product of two matrices A and B is defined as the sum of the products of their corresponding enfries.

Let's calculate the standard inner product of U and V:

v

The standard inner preduct (U, V) is given by:

(U, V) = U[0][0] x V[0][0] + U[D][1] x V[0][1] + U[1][0] x V[1][0] + U[L][1] x V[1][1]
Substituting the values:

(U,V)=(6x1)+(-1x3)+(2x-1)+(-2x0)

(U,V)=5-3-2+0
(U,V)=0

Since the standard inner product of U and V is 0, we can conclude that the matrices U and V are orthogonal with respect to the standard inner
product on Mas .
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15. If the vectors u=(1,2) and v = (2, —4) are orthogonal
with respect to the weighted Euclidean inner product

(u, v) = wyu vy + wau,v,, what must be true of the weights
wy and w,?

Given vectors u = (1,2) and v = (2, —4), determine the weights wy and ws in the weighted Euclidean inner product formula
(u, v) = wyuyvy + Wallgvy

such that u and v are orthogonal.

Substitute the Vector Components: Substitute the components of uand v into the inner product formula:

(0, v) =wy-1-2+wy-2-(—4).

Simplify the Expresslon:

(u,v) = 2wy — Bwa.

Set the Inner Product to Zero for Orthogenallity: For u and v to be orthogonal, (u, v) = 0. Therefore, we set the equation to zero:
2‘\1"1 — SWQ = 0

Solve for the Relatlonship Between w; and w :
2wy, = Bwo = wy = 4w,

This equation represents the relationship between w, and w, for the vectors to be orthogonal.
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16. Let R* have the Euclidean inner product. Find two unit vec-
tors that are orthogonal to all three of the vectors
u=(2,1,—4,0),v=(—-1,-1,2,2),and w = (3,2, 5, 4).

P Py e T o,
at'wnm Vcc,-l'ovsK& - [3’2’5’47

(”;”)212)’ i
vc,(,'(-'of Hha 15

0O 2, 15Ty D) Ve

L-Q/l' Cq,b’c)o() Mw.
OrH\ocjonq o wu, Vv, w,
-— Crs
Casbl el 0L e d b izt pis) | 2k 4c -0
A = F 2t =0
(2, b,¢). j(-1,=1,2,2) = =) —a-b+t2Ct2

d&—
(ayb,c) « (3,2,5,4)=0=) 3a+2b" Bé A Ae50

> 2 =1 —iF 0 a
3 i (| 2 o b =1
—_— K
3 G s B 5 &)

Nowi o sodwe abpwne sysre— | redwee the w*//
ma.i'rl'?\ -to ‘6"(&6-

pi—>F1 s R S T
= = - alx | N2y
3 8 S R

K,_-—éﬁ;,-te.} I

Losl=
\
'\Q
G

Pl=
1
L
-
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17. Do there exist scalars k and [ such that the vectors
p, =2+ kx +6x2, py=1+5x+3x2 p;=1+2x 4 3x?

are mutually orthogonal with respect to the standard inner
product on P,?

Polynomialsarep; =2 + kx + 6x2 pa =14+ 5x + 3x2 ps =1 + 2x + 3x%

If vectors are mutually orthogonal then inner product of any 2 vectors is (.

Inner product of a; + apx+.. agx® and by + bex+..bpx® Yis [a; ag...an] - [by ba...by]"
Inner product (p,p2) =[2 k 6.1 5 3T

(Pp,p2) =21 + 5k + 3 x 6
{pl,l}g} = 21+5k + 18

Equating dot productto 0

21+8k+18=0
21 = -5k — 18
1= 5k 18

52 18
].:—E - 3
1= -3k—9

Inner product {py,ps) = [2 &k ﬁ]T (12 'E'{T
P,p3) =2x1+2k+3 x6

(P1:P3) =2k + 18 + 2

(P1,p3) = 2k + 20

Equating dot product to 0

2k+20=0
2k = —20
k-2
k=-10

Fork:—lﬂ,l:—%k—g=—%><—1[I—!§I
I1=5x5-9=25-0
1=16
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Inner product {pa,ps) =[ 5 3]7-[1 2 3T
(p2,p3) =1+5x2+3x3

(P2, p3) =14+10+9

{]]2, ]]3} =14+19

Equating dot productto 0

14+19=0

Substitute 1 = 16 in above equation

164+19=0
35=10

But 35 £ 0 so above equation is false.
It means forl = 16, k = —10: all vectors are not mutually orthogonal.
This means for any value of 1, k all 3 vectors are not mutually orthogonal.

So there exist no scalars 1, k such that vectors py, pa, p3 are mutually orthogonal.
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46. Use the Cauchy—Schwarz inequality to prove that for all real
values of a, b, and 6,
(acosf + bsin 9)2 < a® + b’

Solution:

of Dr. Wael Mustafa

sCan me
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2. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R>.

1 1 1 1 1 1 1
(a) (E,O, E)a (ﬁ» ﬁi_ﬁ)‘i (_72': Oa ﬁ)
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7. Verify that the vectors

W= (=240 = (2.0 =00

form an orthonormal basis for R® with respect to the Eu-
clidean inner product, and then use Theorem 6.3.2(h) to ex-
press the vector u = (1, —2, 2) as a linear combination of v,
Vs, and vs.

THEOREM 6.3.1 If' S = {vy, V2, ..., V,} is an orthogonal set of nonzero vectors in an
inner product space, then S is linearly independent.

THEOREM 6.3.2

(@) If S ={vi, Va, ..., W, } is an orthogonal basis for an inner product space V, and if
u is any vector in 'V, then

) ) (%) a
= 1 2T n
lIvell? [Iv21I? lIv. 112
(b) If S ={vi, Vva, ..., v, } is an orthonormal basis for an inner product space V, and
if wis any vector in 'V, then
u = (u, vi)vy + (U, V2)vo + - - - 4 (U, V) Vy (4)

Alae, Ty =] 2= ~ &
2S ay

N

WYl =1, fvq) =)

$o, Vs, Vig, )Lmrm j’-uvm a  orthenormal
barx's s‘fr [R-s

Now, o = = & s W : |
:; - ; 4/s + G ‘j/r -+ <-§ 0
Y

l B
B B % (1,>( o)z "B g _
2 : s s s

( (‘Vf) 4 I -
- ) ol W Elcil Bl R
(1. e‘ S s [

)
v
I\

N
w

\

\
pe
'\/
>
~0 O
N4

A

‘\)
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In Exercises 29-30, let R? have the Euclidean inner product and
use the Gram—Schmidt process to transform the basis {u;, uy, us}
into an orthonormal basis.

2. uy=(1,1,1), u =(—1,1,0), us=(1,2,1)

1
vi=uy= {1
1
v u << Na, Vi >
2=ux—
|"r1||2
e “1+1+40
- 1+1+1 '
-1 -1
={11-0=11
0 0
Ve g < g,V = < g, Vy = vy
[|v4l[® ||val|?

1 -1
s 1+2+1 —1+2 .
a L 14141 1+1

1 1 -1

4 1
=21 -=11}-=11
3 2
1) 1 0
1
Li]
I
o Li]

now find all three narms

viP=1+1+4+1=3
Vol =1+1=2

vall? = 1,11 1
ul 9 6

orthonormal vectors be

Vi Vi ¥3
[vall * [fvall * (1wl

(Gs33) (559

5
=

sl
S
I5—\',.—l'
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32. Let R have the Euclidean inner product. Find an orthonor-
mal basis for the subspace spanned by (0,1, 2), (—1,0,1),
(—1,1,3).

%Mf  Given Hhat Hhe <ubSkace
shomned b (64 @), (v and (-143)

i.(e. M = ko,'l,‘)_), .

e =12 )
H_.( & e
HA = k._\,0|1-\, 3

th \é.,)_: }-‘\q‘ - <H7~I\é.’7 \;_
2

\’&'1 = k“\)013—7 = <k—-\,0,l_) p ko,l,')..)> QO(‘,()_)

W oV =

Vo= (- on) — (O+0+2) (o,V2)
Ko"—-%\"'\-‘r')_q-)

Yoz (FUon) — _'2_%__ CURY,

Vo V=Wl = (6/ (‘2_',;! 9,5;)

Y= k“’—ol 0-—'2—§ / ‘_(}S:)

= (L g L )l

And
\5‘3 = b“.’5’_ <H3)‘4|>

b — <Hsiday
|l\J~I(]‘) “\j‘l\\o_
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\13; L=, 4 B & O, 1,2 Om L5

-(0,1/2)
0% (¢ 2%
s -1 —Z 1
— & E=13 ;30 (¥, = 5/)>(§,—1_/
_L' J ?/S_r)

1% (20 + ()

o+iF £ 12) - (1=2432 Y014 1

/.(0/1 _j/’i ( I/?;(;)
3 114 +1
L 25 2%

gt g 2 —

\t
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i (=,-2
IS 5\)3,5\5
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fre. 43 = o) |
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So +hig Vedhst not belor- +he 91ven bosis
vecteH

the ok Q4 ¥a} = (012, (1% ) }
b Hie 8ot of osrthogorol bagls -

l\fow,

2, = o)
\‘OQ—HQ—»'),'l

2\’: QO,'{Q)
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37. Let R? have the inner product
(u, v) = uyvy + 2urv2 + 3usv;

Use the Gram—Schmidt process to transform u; = (1,1, 1),
w = (1,1,0),u; = (1,0, 0) into an orthonormal basis.

Given inner product on R* as:
(4,V) = uyvy + 2ugva + 3ugvy

where i = (uy,ug,u3) and ¥ = (v, Vo, Vs)

Using the Gram-Schmidt process to transform the following vectors into an orthonormal basis.
i; = (1,1,1),d, = (1,1,0),13 = (1,0,0).

Here

Explanatlon:

Because | [i]| = (i, 1 1z

[

—

Vi

4
kL
[

[

¥

1
ﬁ (1,1,1)
1

- vﬁjﬁj‘ﬁ)
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To find va.

<ﬁ21 ir_l) .

v
()

To find {ﬁg,"—h}_

Vo = 1ig —

(g, ¥1) =1+ 2

—3
and
(¥1,%1) =6
Hence,
- - ﬁi:*l)
Va=U2— S/ 1
(1"1?1"1
3
=@LN—EUJJJ
1
=@LM—EUJJ}
(111
T \2'2" 2
1/2
1 1 1
Hﬁ”=(z+2xz+3x1)
B 1+2+3
V4 4 4
B [6
V4
V6
2
- 1
CWa = /T Va
|[¥2]|
2411 1
CJe\272 2

élH
élw
Eﬁ]"m_.-*
~——

Il
_—
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To find ¥

(Vi.dg)  {¥a,dg)
- - W ; - Va

(VW) | (Va,¥a)

vi=(1,1,1),va= (%, %, %), ua=(LU,U)

W3 =g

{illﬁﬂ}_l
(¥1,%1) = 6
- 1
{viluﬂ}_g
. a
1 1/2 71 1 1
vy = (1,00 —(1,1,1 —_— =, = —
va=(1.0,0) - £(1,1.1) 3;2(2‘2’ 2)
1 1 1 1 1 1
00 (555) (55 5)
i 11 1 1.1
- 6§ 6' 6 6' 68
1 1
(539
2 1
(2 o
(339
. 1,2
V|| = (¥a,¥a)
4 1 lll'i
(S 42x=
91 xg)
V6
=73
. 1
LWy = ——Wy
¥3

3639
-G

Hence the orthonormal basis =
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Let R? have the inner product < u, v >= w0, 4 2usv2+3usvs. Use Gram-Schmidt to transform
Uy = (1,1._1:]., Us = (1,1,0} Ug = (].U.U:]

into an orthonormal basis with respect to this inner product.
T, 1 1y =— 1y = ! | v
We start with vy = \/T:zliu? or vy = 7= (1,1,1). Now

Ug— < U9, U1 > 1
|lug— < uz, vy > vy
111

_ (151!0) RIS E]
llus— < uz, vy > vy

bbb
V<@

g =

——

8h (3
(1,1,-1) .

Wl
e

MI'—'
Kol

%IH

Finally,

Ug— << Uz, Vs = Up— << Uz, Uy > 1

9 |uz— < ug, v2 > va— < uz, vy > vq|

1 1 1 1 1
0.0~ % (F %) ~ % (F 7 )

uz— < ug, v9 > vo— < ug, vy > vy

(k)
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8.1 General Linear Transformations

In Exercises 1-2, suppose that T is a mapping whose domain
is the vector space M. In each part, determine whether 7 is a
linear transformation. and if so, find its kernel.

1. (a) T(A) = A2
(¢c) T(A) = A+ AT
1(a) Consider, A, B € Mas .
Now,
T(A+B) = (A+B)*
=A%+ B?+ 2AB
= A’+B*+AB+BA
Now, T(A) = A%and T(B) = B2.
Since, T(A + B) # T(A) + T(B) .
Therefore, T(A) is not a linear transformation.
Explanation:
The formula for (a + b)? = a? + b® + 2ab .

€) Consider, A,B € Mas.
Now,

T(A+B)=(A+B)+(A+B)"
=A+B+BT+AT
=(A+A")+ (B+B")
= T(A) + T(B)

Maow,

T(aA) = aA + (aA)"

=a(A+AT)
=aT(A)

Since, T(A + B) = T(A) + T(B) and T(aA) = aT(A).
Therefore, T(A) ic a linear transformation.
MNow, the kernel is given by

ker(T) = {A € Mg : T(A) = 0}

:{}1 b'_[a b]_l_[a c]:
lc dl " |e d b d

_{ﬂa b-l—c]:[]}

“lb+e  2d

:2a:0,b+c=0,2d:0}

[0 b
e

'

=

Il
——

&
& Ao A

a o

——
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10. Let T:P,— P; be the linear transformation defined by
T(p(x)) = xp(x). Which of the following are in ker(7)?

(a) x> (b) 0 (c) 1 +x (d) —x

(10)
T is a linear transformation from the vector space P to the vector space P3 defined by T(p(x)) = xp(x).
To find the kernel of T, we need to find all polynomials p(x) in Py such that T(p(x)) = xp(x) = 0.

Since the zero polynomial is the only polynomial that satisfies this condition, the kernel of T consists only of the zero polynomial.

So, only the zero polynomial Is In ker(T).

11. Let T : P, — P; be the linear transtormation in Exercise 10.
Which of the following are in R(T)?

(a) x + x? (b) 1 +x (c) 3 —x2 (d) —x

(11)
T is & linear transformation from the vector space P to the vector space Py defined by T(p(x)) = xp(x).

To find the range of T, we need to find all polynomials q(x) in P such that there exists a polynomial p(x) in Po with T(p(x)) = xp(x) = q(x).

Since any polynomial g(x) in Py can be written as q(x) = xp(x) for some polynomial p(x) in Py, it follows that the range of T is the entire vector

kpace Pa.
S0, all polynomials in P are in R(T).

Out of the glven optlons, only (a) x+x% and (d) —x areIn R(T), since they are both polynomials In Py,
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13. In each part, use the given information to find the nullity of
the linear transformation 7.

(a) T:R’>— Ps has rank 3.
(b) T: Py — P; hasrank 1.

(¢) Therange of T: M,,, — R* is R°.
(d) T: M22 —}Mzz has I‘unk 3.

& (a) T WS

— P had yank 3
e By vk bl e
Rank(1) + ity () = dlim (%)

9 ndhy(7) - §-8-a
(8 T p— Py has vavk 1
Fhtn Ba Yank - ’”“MW Ahemem

Ronk(T) + ndtgy (1) = dim ()

A oulll(r) = dim (py)- Rerk(T)

= 5-1 = 7
\ 3 :
2 dfmerm"lm 4 Range g T , s 3
9 Ra"k(/r) = d';”e”d:im ‘ff Rar(v?( $pace o('}(’f :
= 3 |

(-2 mmn "3

(-d) T m&a asi }/b_i M yank 3

g ounyer)z  dm(y) - Rek(D

= L/-g
= ],



CHAPTER 8: General Linear Transformations

14. In each part, use the given information to find the rank of the
linear transformation 7.

(a) T:R”— M3 has nullity 2.

(b) T: P;— R has nullity 1.

(¢) The null space of T: Ps — Psis Ps.
(d) T: P, — M,, has nullity 3.

14)

a)Given T : BT — M, nullity(T) = 2
By RNT

rank(T) + nullity(T') = dim(R7)
rank(T) + 2 — 7
=rank(T)=7—-2=5

=== rank(T) =5

b)T : Py — R nullity(T) =1

By RNT

rank(T) + nullity(T) = dim (P3)
= rank(T) +1=14

= rank(T)=4—-1=3

= rank(T) =3

)T : Ps — Ps nullspace is P; = dim (Pg) = 6
By RNT

rank(T) + nullity(T) = dim (Ps)

rank(T) +6 =6

= rank(T) =6 — 6

= rank(T) =0

d)T : Pn —+ Mpp nullity(T) = 3

By RNT

rank(T) + nullity(T) = dim (Py)
rank(T)+3=mn+1

= rank(T)=n+1-3=n—-2
== rank(T) =n — 2
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15. Let T : M, — M3, be the dilation operator with factor k = 3.
2

a) Find T
(a) Fin -

(b) Find the rank and nullity of T'.

» EXAMPLE 4 Dilation and Contraction Operators

If V is a vector space and k is any scalar, then the mapping 7: V — V given by 7(x) = kx

1s a linear operator on V, for if ¢ is any scalar and if u and v are any vectors in V, then
T(cu) = k(cu) = c(ku) = cT(u)
Tu+v)=k(u+v)=ku+kv="T(u)+ T(v)

If0 < k& < 1. then T is called the contraction of V with factor k, and if k > 1, it is called
the dilation of V with factor k.

THEOREM 8.1.4 Dimension Theorem for Linear Transformations

If T:V — W is a linear transformation from a finite-dimensional vector space V to a
vector space W, then the range of T is finite-dimensional, and

rank(T) + nullity(T) = dim(V) (7)

In the special case where A is an m x n matrix and T4: R" — R™ is multiplication
by A, the kernel of T4 1s the null space of A, and the range of T4 is the column space of
A. Thus, it follows from Theorem 8.1.4 that

rank(T,) + nullity(Ty) = n
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16. Let T : P, — P; be the contraction operator with factor
k=1/4.

(a) Find T(1 + 4x + 8x?).
(b) Find the rank and nullity of T'.

» EXAMPLE 4 Dilation and Contraction Operators

If V is a vector space and k is any scalar, then the mapping 7: V — V given by T(x) = kx

is a linear operator on V, for if ¢ is any scalar and if u and v are any vectors in V, then
T(cu) = k(cu) = c(ku) = cT(u)
Tu+v)=k(u+v)=ku+kiv="T()+ T(v)

If0 < k& < 1. then T is called the contraction of V with factor k, and if k = 1, it is called

the dilation of V with factor k.

The operator T : P; —+ P5 is the contraction operator with factork = 1

ie, T(p(x)) = 3p(x) forall p(x) € Ps
(a) Therefore, T'(1 + 4x + 8x7)
= 1(1+4x +8x%)
= 1 +x+ 22
(b) Now, Ker(T) = {p(x) € Py : T(p(x)) =0
= {p(x) € P2: {p(x) = 0}
= {p(x) € P2: p(x) = 0}
= {0}
Hence, dim (Ker(T)) =0
- Nullity (T) =0

i |

}

wEE Let, q{x} € Ps (co-domain) be arbitrary
Consider p(x) = 4q(x)
Then p(x) € P2 (domain) and T(p(x)) = $p(x) = q(x)
Hence, T is surjective
-.Range (T) = P3
. Rank(T) = dim (Py) = 3
Hence, Rank(T) = 3
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19. Consider the basis S = {v;, v,} for R?, where v, = (1, 1) and
vo = (1,0), and let T:R?>— R? be the linear operator for

which
T(vi) =(1,=2) and T(vy) =(—4,1)

Find a formula for T(x,, x»), and use that formula to find
T(5, =3).

Let us consider basis for B2 given by:

Il (1
s={ [}
and let us consider linear operator T : B? — B2 for which:
Tim) = [_12] and T(w) = [_14}

Let us first find formula for Tz, x2):

(rgwa) = avy + by

-l

ri=a+h
— = d=I3 and b= Il — I3

which gives us:

Therefore, we have:

T{xy,xa) = Tlxavy + (x1 — x9)09)

= ral{vy) +{xq —x2)T(1a)

1 4 Ay + 519
= I |:_2:| +{;1~1 — ;r?,] |: 1 :| = |: ry— :1.-!'3 :|
T(5,-3) = {‘lﬂ

Which gives us:
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20. Consider the basis S = {v,, v»} for R?, wherev, = (=2, 1) and
vo = (1, 3), and let 7 : R* — R’ be the linear transformation

such that
T(vi) = (—=1,2,0) and T(v,) =(0,-3,5)

Find a formula for T(x;, x,), and use that formula to find
T(2. =3).

Let us consider basis for B2 given by:

s={[7] i}

. . 2 : :
and let us consider linear operator T : B? — B* for which:

-1 0
Tl )= [ 2 ] and T{u2) = [—3]
0 i}

Let us first find formula for T(xq,x9):

(r1,m2) = av +bwa

- <[4l

Ty =—2a+bh 1 1
= ! = a=(—3ri+rz)and b= =(x; + 2x3)
Ta =a+ ab i i

which gives us:

1

1
(r1,23) = =(—3x1 + x2)v1 + o1 + 2x9)10
i

i

Therefore, we have:
- _ 1 1
Txy.ra) = T F{—E:l‘i +xa)u + ?{:1!‘1 + 2xa)uo

= %{—32‘1 + x9)T 1) + %{;1‘1 + 2x9)T (1)

1 -1 i )] T II_—!.-:
= (=3zitag) | 2| +oloy+22g) -3 = |
? {_'] ? 5 Ha 1024
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23. Let T: Py — P, be the mapping defined by
T(ap + a1x + arx® + a3x*) = Say + azx*?

(a) Show that T 1s linear.
(b) Find a basis for the kernel of T'.
(¢) Find a basis for the range of T.

(a) Showlng that T Is linear:
To show that 2 mapping T is linear, we need to demaonstrate that it satisfies two properties:

Explanation:

1. Additivity: For any vectors uand v in the domain of T, we should have T(u + v) = T(u) + T(v).
2. Scalar Multiplication: For any vecter nin the demain of T and any scalar ¢, T(cu) = ¢T(u).

et's check each property for the given mapping T:
Let u = ag + 23X + asx° + asx° and v = by + byx + bax® 4 bax®, where a; and by are constants.
1. Additivity: T(u + v) = T(ag + a;x + asx" + azx’ + by + byx + bex® + bsx’)
= T((a0 + bo) + (a1 + by)x + (a2 + ba)x" + (a3 + bs)x*)
= 5{30 + hu] + (az + hs}xz
— Hag + asx° + 5by + bax®
= T(ap + a;x + asx” + agx®) + T(bg + byx + box” + bsx’)
= T(u) + T(v)
2. Scalar Multlpllcatlon: Let ¢ be a scalar.
T(cu) = T(c [a.q + a;X + 25X + 3313)}
= T(cap + cax + casx’ + cagx’)
= Seag + cagx’
= chag + cagx’
= cT(ap + arX + ax” + agx’)
= cT(u)
Since T satisfies both properties of linearity, it is indesad z linear mapping.

(b) Finding a basls for the kernel of T:

Explanation:

The kernel (also called the null space) of a linear transformation T is the set of vectors in the domain that map to the zero vector in the
codomain.

In this case, we want to find the vectors u = ag 4 a;x + asx® + agx* that satisfy T(u) = 0.

From the definition of T, we have 5ag + asx® = 0.

This implies that ag = 0 and ag = 0, since there is no x term in the right-hand side.

So, the vectors in the kernel of T are of the form ax + 3212, where a; and ag are arbitrary constants.

A basic for the kernel can be chosen as {x, x2}, as theze two vectors are linearly independent and span the kernel.
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(c) Finding a basls for the range of T:

Explanation:

The range of a linear transformation T is the set of all poszible vectors that can be obtained by applying T to vectors in the domain

From the definition of T, we see that the range of T is spanned by Sap + a.gxz.

This means that any polynomial of the form Sag + a;;xg can be obtained in the range.

Since the range is the space of polynomials in Pa, a basis for the range can be chosen as {5.. xz}.
These two vectors are linearly independent and span the range of T.
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24. Let T: P, — P, be the mapping defined by
T(ap + a1x + axx?) = 3ap + arx + (ap + ap)x*

(a) Show that T is linear.
(b) Find a basis for the kernel of T'.

(¢) Find a basis for the range of 7.
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31. Let vy, v,. and v; be vectors in a vector space V., and let
T :V — R? be a linear transformation for which

T(vp)=(1,-12), T(v)=1(0,3,2),
T(v3) = (=3,1,2)
Find T(2v; — 3v, + 4v;).

T{2ve-3ve+dvs)=2T{v1}-3T{vz)+4T(v3)

=2(1,-1, 2)-3{0,3,2)+4-31 2}=(2-12 -2-9+4 4-6+8)=(-10,-7,5)
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8.2 Compositions and Inverse Transformations

In Exercises 1-2, determine whether the linear transforma-
tion is one-to-one by finding its kernel and then applying Theo-

rem 8.2.1.

1. (a) T:R?>— R?, where T(x, y) = (v, x)
(b) T:R*>— R>, where T(x, y) = (x, y,x +y)
(¢) T:R*—>R*> where T(x,y,2) =(x +y+2,x —y—2)

1.3)
Here,

T(x,y) = (v,%)

Alinear transformation T : A — B is caid to be one-to-cne Now,
if, Ker(T) = {6}

Where,

Ker(T) = {xe A: T(x) =8}

T(x,y) = 8 gives
T(x,y) = (0,0)
(¥.x) = (0,0)
=x=y=0

. Ker(T) = {(0,0)}
Hence, T is one-to-one.

1b)
Here,

T(x,y) = (x,¥,x +7¥)
MNow,
T(x,y) = 8 gives
Tf][, }r) = (U, 0,0)
[:KJ ¥, X+ }r) = {U, 0,0)
=x=y=0
. Ker(T) = {(0,0)}
Hence, T is one-to-one.

1.c)
Here,

T(x,y,2z) = (x +¥ +2,%x—y —z)
Now,
T(x,y,z) = 6 gives
T(x,y,2) = (0,0)
(x+y+zx—y—z)=(0,0)
=x+y+z=0

x—y—z=10

Take, x = 0,y = 2,z = —2, then it also satisfying above
- Ker(T) # {(0,0,0)}
Hence, T is not one-to-one.
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5. Use the given information to determine whether the linear
transformation 1s one-to-one.

(a) T:V — W:nullity(T) =0
(b) T:V— W rank(T) = dim(V)
(¢) T:V—-W.dim(W) < dim(V)

Consider the given linear transformation,

T :V — W;nullity(T) =0

It is required to determine whether the linear transformation is one-to-one or not.

The null space consists of all vectors in 'V that map to the zero vector in W . If the null space is zero-dimensicnal, it implies that the only vector

mapping to the zero vector in W is the zero vector in V.
Since, T' maps distinct vectors in 'V to distinct vectors in W . Therefore, the linear transformation T is one-to-one.

b.

Consider the given linear transformation,

T:V — W;rank(T) = dim (V)

It is required to determine whether the linear transformation is one-to-one or not.

If the rank of T is equal to the dimension of V| it implies that the column space of T spans the entire space W .
So, for every vector w in W , there exists at least one vector vin V such that T(v) = w .
Since each vector in W is uniguely mapped to by a vector in V|, the linear transformation T is one-to-one.

Ceoncider the given linear transformation,

T:V — W;dim(W) < dim (V)

It is required to determine whether the linear transformation is one-te-one or not.

In this case, it is not possible for the linear transformation T to be one-to-one. This is because if W has fewer dimensions, there must be multiple

vectors in V that map to the same vector in W .
there exists a non-trivial null space, and T cannot be injective (one-to-one).
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6. Use the given information to determine whether the linear
operator is one-to-one, onto, both, or neither.

(a) T:V — V:nullity(T) =0
(b) T:V — V:rank(T) < dim(V)
(¢c) T:'V—-V.R(T)=V

(@) Gives that, T : V — V : nullity(T) = 0.
i.e. nullity(T) = dim (kerT) = 0.
= ker(T) = {6}, where 8y is the null vector of the vector space V.

Now, let a, 8 € V such that T(a) = T(8) .

T(a) = T(B)
T(a) — T(8) = 6.
T(a — f) =6,

Therefore, a — 8 € Ker(T).
= a— f3=60y,since Ker(T) = 6.
= a=p8

Hence, for any arbitrary ax, 8 € V, we have

T(a) = T(8) = a=8.

. T'is one-one.

Therefore, if nullity(T) = 0, then T is one-to-one.
As Tisone-to-cneand T :V — V,so Tis onto.

Hence, T is both one-to-one and onto.
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(b) Given that, T : V — V;rank(T) < dim (V).

From rank-nullity thecrem, we know that nullily(T') + rank(T) = dim (V).
= nullily(T) = dim (V) — rank(T)

Since, rank(T) < dim (V),

= 0 < dim (V) — rank(T)

= 0 < nullily(T)

= nullily(T) # 0 .

Therefore, T is not one-to one.

As T is not one-to-one.
Hence, T is not onto.

Therefore, T is neither one-to-one nor onto.

(c) Giventhat T : V — V;R(T) = V.

Here, R(T) =V, so T is onto.

From rank-nullity theorem, we know that nullily(T) + rank(T) = dim (V)
= nullily(T) + rank(T) = rank(T)

= nullily(T) =0.

So by part (a), T is one-to-one.

Therefore, in this case, T is both one-to-one and onto.
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8. Show that the linear transformation T:P, — P, defined by

T(p(x)) = p(x + 1) 1s one-to-one. Do you think that this
transformation is onto?

_'_ Ot Q) (W) +0.(

R, o 4, RN
kao 'l’q '\’QL) = @,-}-LQL)\ * R

Lot ’T(Q.,’V\&QM&QM) = T (b b +b,_'x‘a |
| o V) 5 T C3ew) |
m - on +Q| ‘+~QL) *(\Q\flu,:)’\'\-%— OLM'l: @o‘t o tb,) + (b4 92bI™M
& by

= D =ton_
(Grea) = (brre) =7 @=F
Qo 8,44, = Pt btbe =) A=
Homee Pt = 3w

B T i one ~fo- Ong,

YO> +hid Ovte
T I

(’v\nf\e,hﬁx Q:,_uc) (-2 )™+ -
(@ bc) 4 Lbme)W & OWY)

O+ v A ent

Another proving of " onto " applying the following Theorem:

THEOREM 8.2.2 If'V and W are finite-dimensional vector spaces with the same di-

mension, and if T:V — W is a linear transformation, then the following statements are
equivalent.

(a) T is one-to-one.
(b) ker(T) = {0}.
(¢) T isonto[ie, R(T)= W]
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8.4 Matrices for General Linear Transformations

1. Let T:P,— P; be the linear transformation defined by
T(p(x)) = xp(x).
(a) Find the matrix for T relative to the standard bases

B ={u,m, wm} and B' = {v|, vs, vy, vs}

where
w=1 w=ux, u=ux?
vi=1, vw=x, wvi=x% wv=2x°
(b) Verify that the matrix [T] . p obtained in part (a) satisfies

Formula (5) for every vector x = ¢g + ¢ x + cyxXin Ps.

[T]p glx]g = [T(x)]5 (5)
o i) Letu = a + bx + ex?
Itis given that: Then,
T(p(x)) = xp(x) T(u) = ax + bx® + cx®
0
We have: — [T[ll}l]B, _ g‘
C
T(1) = Xz And,
T(x)=x (0 00\
T(x?) =x3 i 1 00 '
&) Als=15 ; of|®
C
The standard basis is: (kg 0 1
i
0D 0 0 =14
1 0 0 K
A= ¢
D 1 0
00 1 Clearly,
T(u)lg = Aulg
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5. Let T: R*> — R? be defined by

()-[ %

(a) Find the matrix [T ] p relative to the bases
B = {u;, w;} and B’ = {vy, v», v3}. where

H

u =
1 2 3
vi=|1], v»=12], vv=1|0
1 0 0

(b) Verify that Formula (5) holds for every vector in R.

- T + 2z
Given the linear transformation T[ 1] = —T
Ia 0
The basis are B = { {1} {_ } }
31| 4
1 2 3
and B"'= 1, {2},10
1 0 0

To find the matrix representation of the linear transformation T with respect to the bases B = {u;,ua} and  Br = {vy, va, v}, calculate how T
maps the basis vectors 1y  and  us in terms of the basis B'.

Explanation:

First find images of basis B under T.

.

M1+ 2(3)

T(us) =T [_2]

MNow writing these vectors in linear combination of basis BY

HRINEY

and

IR

The coefficients of the elements of basis forms required matrix.

0 0
1
Tlgg= |7 1
B 4
13

Formula 4z is not given so can't proceed with b.

b) rank of domain < rank of codomain

50, Tis one-one

hence, image of every vectorin R2ic unigue

or we can say T gives image of every vector in R2,
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6. Let T: R? — R? be the linear operator defined by
T(x1, x2, x3) = (X1 — X2, X2 — X1, X1 — X3)

(a) Find the matrix for T with respect to the basis
B = {vi, v2, v3}, where

vl=(1s03 ]-_)a V?,:(O,]_.,l), V3=(1,1,0)

(b) Verity that Formula (8) holds for every vector
X = (x}, x5, x3) in R,

(c) Is T one-to-one? If so, find the matrix of 7~! with respect
to the basis B.

[T]glxlg = [T(x)]r (8)

Given

[T(x1,X2,X3) = (X1 — X2, X2 — X1, X1 — Xg)]

vi = (1,0,1),va = (0,1,1),v3 = (1,1,0)

(8) Matrix Tw.rt. basic B = (vq, va, v3)
T(1,0,1) = {1 -0,0— 1,1 —1} = (1,-1,0)

T(0,1,1) = {0 — 1,1 0,0 — 1} = (—1,1, 1)
T(1,1,0) = {1 —-1,1—1,1—0} = (0,0,1)

(1,-1,0) can be written as linear combination of vy, va, vy
(1,-1,0) =a(1,0,1) + b(0,1,1) +¢(1,1,0) — (1)

On comparing xy and z coordinates
l=a+c¢,b+c=-1,a+b=0

by solving

c=0,a=1b=-1

By Equation (1)

{1'. -1, ﬂ) - 1{1'. 0, lj - 1{'}'. 1, 1:] + ﬂula 1,{]]
Similarly

(—1,1,-1) = —3(1,0,1) + 5(0,1,1) + 2(1,1,0)
{D'. [}51] - %(1:[}:1] + %{'}1 1, 1} - %{1? 11-'}}
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Matrix for wrt bhasis B is

1 -1 01°
3 1 1
T=]1—3 73 3
11 1
| 2 a9
|.e.
i} . -
1 -3 3
T- (1 3 3
1 1
0 35 —3

(5) property & s [T]pXlp = [T(X)]g
Let's X = (Xy, X3, Xa)
(X1, X2, X3) = a(1,0,1) + b(0,1,1) + ¢(1,1,0)

—on — X);—XatXy
b __ X 8 Gl B ]
S
c— Ttmxm
2
[ T1—ToT3
2
_ | mmozim
K= [==—
Z14T3 T3
L 2 i
(c) we first find determinants of [T]g
1 1
1 -3 3
- 1 1
Tpl=|-1 3 5
1 1
1 ﬂl 2y 1y, 11
=3 -3 +2(3)+3(-3)
=0
det (Tp) =0

It is a singular Matrix.
And We know singular Matrix does not have inverse i.e. it is non inevitable .
It is not one-one.
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1 —1 1 3
9. Let v, = and v, = ,and let A = be the
3 4 -2 5

matrix for 7 : R> — R? relative to the basis B = {v, v,}.
(a) Find [T(v;)]p and [T(v2)]p.
(b) Find T(vy) and T(v,).

(¢) Find a formula for T ([xl])
X2

|
(d) Use the formula obtained in (¢) to compute T([l])

1 -1
Solution(11.1.3) Given, ¥; = lg],ﬁ = [ 4 ]

1 3
and A = is the matrix of T : R? —+ R? with respect to the basis B = {¥,, Va}

—2 5
@ S0, [T(¥1)}g = [_12] and [T(¥)ls = [:]

(B) The linear transformation T may be written as

T(v) = A¥ = _12 z]
() M % YA
o moo=([) - I T e
() Now, T(v) = 2 "\
A
cer({) [ -39
Now Z =x1[ﬂ +:~:2H

1 0
=T = =x;T + X T as Tis a linear transformation.
Ia 0 1
1

T T\ 3] | T+ 3z 1 Anew
T3 - —2 T 5 |2z + 522 - rEweEr

[diHere, X3 =X =1
Therefore, from (1) above,

T 1 B 14+3x1 B 143 _4 N
1) T |—2x145x1| " [-245| " |3 rEwEr
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1 3 —1
1. Let A= |2 0 5 | be the matrix for 7: P» — P> with
6 -2 4
respect to the basis B = {v;,v,, v;}, where v; = 3x + 3x°,
v = —1+4+3x + 2.\'2, vy = 3+ 7x + 2x%.
(a) Find [T(v)]g, [T(v2)]p, and [T(v3)]5.
(b) Find T(v,), T(v,), and T(v3).
(c) Find a formula for T(ag + a\x + ax?).

(d) Use the formula obtained in (¢) to compute T(1 + x?).

Soluon .

A= |G T |
2 0O )
€ -2 g

A 6 o madrix of T: PR - AIR) wwt

basls @ = {vy,va, vy}  where
R X & - T SRRV o B L A Nl W R P D

(1) soluron: o
Vi = VWV X0V, ¥ 0V = [W]B:[g:}

s. ET(\/\)’]@) = {T:{ %]:Vi:‘@ - [;_ 50 -15] é = [;
€ - 4 €

N, = 0V, A4V YoV S [Vg,]% = [?

2oL lg T IT]E[VJ% ) E‘f 3?": %][;J ) E)l]

_ [}
VZ::'O'V| +0‘V1+"\£‘3 = [VQ’th o)
(

- el 4 ]
2 [T(vn]@: ;2 | [T(‘Vﬁ]@:[:—;l | Lmﬂﬁ:[‘%

')_-_ ‘Vi"\'g—'vﬂ——\-g"fz

2
121
L, e AuT B + a2t

\i)*-i T
= 3:{_—\-3'11

jaxz & s\% 16
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TS 3.V, — 2 Vy

= AL+ _ ¢

- uA—4yxz
= Sx*_ 5 x —§

TR) = =V +5V, + L\,
_ 2 . 2
T -3A-DAT -5 15 A NOAX T 124080 L 92
= \SxT+pox Ay
T = 18x* 4 512 416
T(VL) =S AFC 5 -6,
TWz2) =\ 8sx* 460X +7
) We wiite  14x® as (inear combinotion o £
V‘\V'L|V3_
P4t =

a-vy + by, + Cvy

Ta(zxaz3x™) +o -y 43%x+21) + ¢ (34T 42%+%)

— (- 6 +20) + (304230 +TOAL+ (2a+2b +20) X2
-baAz3c = |

—

20 +23b +*TC =0
20 Yy2zb +2¢ =1

2. b= -3¢ = b= 3C—|
206 +2(3C-1) +7C =0 =5 3& +léc =3

20 4 2 (2c-1) +2¢ =—@| = 30 18 =23

£€C = o
b= —| = C=o
1At = N — Vo
TOAXY) = (V) = T(M)= 182y 5|4 +16— S8R+ ¢

= Iyt 56%k L2
TCO4) = 1ax® +5¢x 422
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14. Let B = {v|, v,, v3, v4} be a basis for a vector space V. Find
the matrix with respect to B for the linear operator 7:V — V
defined by T(v;) = v, T(va) = v3, T(v3) = vy, T(vg) = vy.
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18. (Calculus required) Let D: P, — P, be the differentiation
operator D(p) = p'(x).

(a) Find the matrix for D relative to the basis B = {p,, p,, p;}
for P,inwhichp, =2, p, =2 — 3x, p; =2 — 3x + 8x°.

(b) Use the matrix in part (a) to compute D (6 — 6x + 24x?).

(a)
pi=1Lp=xps =x°

SoD(p) =0=0xp1 +0xpa+0xp;g
Dipa) =1=1xp1+0xp2a+0xpy
Dips) =2x=0xp1 +2xpa+0 x pg

So the matrix of D with respect to the basis B is
0 1 0
0 0 2
0 0 0
(b)
Pi=2p2=2 - 3x;p3 =2 — 3x} 87
SoD(py) =0

D[PE] = —3= —%Pl

So the matrix of D with respect to the basis B is

3 23
0 -5 F
i}
0 0 -1
0 0 0

(€} In terms of the basis B given in part (3], we can rewrite
6 — 6ix + 24x = 6p; — 6py + 24py

Therefore using the matrix in part (3), we get

0 1 0
D(6 — 6x + 24x”) = [0 0 2|[6,—6,24]" = [-6,48,0]' = —6 + 48x
00 0
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() In terms of the basis B given in part (&), we can write
6—6x+24x° =3ps—pa+pr
Therefore using the matrix in part (b), we get

0o -3 2

2 i _]ﬁ

D(6-6x+24x°) = o 0o —2[[3,-1,1]'=
0 0 0

3’

16
3

t
_,ﬂ]

16 16
= —pm — —p2 = 16x
3 M SPE
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8.5 Similarity

3. Let T: R*> — R? be alinear operator, and let B and B’ be bases
for R? for which
[T]p = =0 and Pp.p = )2
1 1 11
Find the matrix for T relative to the basis B’.

THEOREM 85.2 Let T:V — 'V be a linear operator on a finite-dimensional vector
space V, and let B and B’ be bases for V. Then

[Tlg = P7'[T]gP (11)

where P = Pp_.p and P 1= Pp_.p.

(7], =P, ,[T],P

B—B’ B~ B'—B

(L

Exterior subscripts

Figure 8.5.2

Solutlon:

Let T: B2 — B2 be a linear operator, and let B and B’ be bases for R2.
. 2 0 3 2
Given that, [T]g = [1 1] and Pp.p = [1 1]

To find the matrix for T relative to the basls B:

Explanation:

The formula for finding [T]g = P [T]g P~

To find the P~ :

The inverse of 3 2 x 2 matrix can be found using the formula

d b
[ ] where ad — be is the determinant.
- a

ad — be
Find the determinant.
det (P) =1

Since the determinant is non-zerg, the inverse exists.
Substitute the known values into the formula for the inverse.

Pl_l[l —2]
1)1 3

1 -2

[11 1.2
S 1--1 1-3
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Mow, we calculate the matrix for T relative to the basis B,

[Tlp =P [T]p P

I3 2I[2 o][1 -

1 1”1 1”—1 3]
6+2 0+2][1 -2

2 +1 n+1”—1 3]

B 2 3”_11 _3]

82 —lﬁ-l—ﬁ]

3—-1 —6+3
[6 -1{]]
2 -3
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5.1 Eigenvalues and Eigenvectors

In Exercises 1-4, confirm by multiplication that x is an eigen-
vector of A, and find the corresponding eigenvalue.

5 -1 |
2. A= X =
1 3 |
Given matrix
2 —1
A=l
And eigen vector is

[

Given vector X is said to be an eigen vector if AX = AX
Now to check

S S [

w[]

Comparing it with AX = AX
We get

A=4

1
Eigen value is 4 ans eigen vector is [1}
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2 -1 -1 1
4. A=| -1 2 —1]:;x=11
-1 -1 2 1

4) Given matrix is

2 -1 -1
A=|-1 2 -1
-1 -1 2

And eigen vector is
1

X=11
1

Now to check eigen vector we find AX

2 -1 11
AX=|-1 2 -1]|1
1 -1 2|1
[2-1-1 0
AX = |-142-1! =10
1-1+1 0
1
AX =0/1
1
AX = 0X

So eigen value is 0 and eigen vector is

1
1
1
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In each part of Exercises 5-6, find the characteristic equation,
the eigenvalues, and bases for the eigenspaces of the matrix.

201
6. (a) [1 2]

_ 2 1
Question: G(a) A = [1 2]

The characteristic equationis [A — ALl =0
2— A 1

‘ 12— A‘ =0

(2-A2-1=0

442 -4r-1=0

A2 4) + 3 = 0itis the characteristic equation.

Mow solve the characteristic equation for the eigenvalues.
A _3A-A43=0

AA-3)—-1(A-3)=0

(A-1)(A-3)=0

A=1,3

Thus the eigenvaluesare Ay =1 and A2 =3

And the eigenvectors can be obtained by [A — AIIX =0
ForA=1; we get

1 o]
RHARY

=x+y=0
= X=-Yy

I — —1
=x=[]=[J]=[.]
Y y 1
Thus the eigenspace for the corresponding value of A = 1is
For A = 3; we get
2—-3 1 z| |0
1 2-3|lyl |0
-1 1 ][z] [0
1 —1f|y| |0
= -—-x+y=0
= X=¥

T 1
soX =[] =[] =+
y y 1
Thus the eigenspace for the corresponding value of A = 3 is

-1 |1
The bases for the eigenspaces of the matrix are { [ 1 } : [1] }
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2 -3
Wl ]

2
GQuestion: 6(b) A = [ ]
0o 2

The characteristic equationis |[A — Al =0
2—-A -3

‘ 0 2- A‘ -0

(2-A)F-0=0

A2 _ 4)X + 4 = 0itis the characteristic equation.

Mow solve the characteristic eguation for the eigenvalues.

(A-2%=0
(A—2)(A—2) =
A=2,2

Thus the eigenvaluesare Ay =2 and A =2
And the eigenvectors can be obtained by [A — AI]X =0
For A = 2; we get

o o[yl
-k

= —3y =10
=vy=10
Andx=x

- f]-[)+4 |

Thus the eigenspace for the corresponding value of A = 2is

1
The bazes for the eigenspaces of the matrix are { [ﬂ] }
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2 0
@y 5

2 0
Guestion: 6(c) A = [[} 2]
The characteristic eguationis |[A — AI| =0
2— A 0
‘ 0 2- A‘ -0
(2-A%*-0=0

A2 — 4\ + 4 = 0itis the characteristic equation.
Mow solve the characteristic equation for the eigenvalues.

(A-2)°=0
(A-2)(A-2)=0
A=12,2

Thus the eigenvalues are Ay = 2 and A= 2
And the eigenvectors can be obtained by [A — AIIX =0
For A = 2; we get

2 L[ [

o of[s] - b

andx=x and y=10

Asoy=y and x=0
T T 1

So X = ]= — X
(] 0

0
T 0 0
wax =[] =[] =5[]
y y 1
1] |0
Thus the eigenspace for the corresponding value of A = 2is ol |11

1] [0
The bases for the eigenspaces of the matrix are { [l]] \ [1] }
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In Exercises 7-12, find the characteristic equation, the eigen-
values, and bases for the eigenspaces of the matrix.

4 0 1
7. 1-2 1 0
L—Z 0 IJ

We have given that the Matrix

4 01
A= |:—2 1 EI]
-2 0 1
To find characteristics equation
Consider |A — M| =0
. 0 1
-2 1-A 0
—2 0 1-A
Therefore, (4 — X) [(1 — /\)E — 0] +0[-2(1—-A)—0]+1[0—(-2)(1—-A)]=0

Therefore,

Therefore, =0

-1 -A*+21-A2)=0

Therefore,
(1= A)3 —A)(2— A) = 0 This is characteristics polynomials
Therefore, A=1,3, and 2 areeigenvalues
Now to find eigenvector corresponding to eigenvalue
ForA=1,
3 01
A-I=1|-2 0 0
-2 0 0
To find null space of above Matrix

RQ:R&-F%RQ and R3=B,3+%R1
[3 0 1

=
=

—

el
Il
=T =1 owluo

=
Il
=
=
E
7
Il
&
|
e
&

(=1 =R X}
[= =N =]
(=2 =]

3 0 0 1]
Therefore, ([0 0 1 =10
0 0 0]|= 0

Put y=t and x=0,z=0

[z 1]
Therefore, (y| = {1}t
E 0

0
Therefore | { 1] } is null space . This is eigenvector
0
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Mow forA =3
1 0 1
A-3={-2 -2 0
-2 0 -2

To find null space of above Matrix,

RBo=Ra+2R; and R:= Ra+ 2R,
1 0 1

0 -2 0
0o 0 0
1 0 1) |z 0
Therefore, |0 —2 2} {y| = |0
0 0 0f|[= 0
Putz=t=y=t and x= —t
T -1
Therefore, fyf = | 1 |t
z 1
-1
Therefore | 1 is null space .
1
This is eigenvector
Similarly, for A =2
2 0 1
A-2I=}-2 -1 0
-2 0 -1

Ry=Ry+R; and Ry=Ry;+ R,

[2 0 1]

0o -1 1

|0 0 0]
Therefore |

2 o0 17 [= 0]
0 -1 1}fj{y} =1{0
0 0 0f |z 0]

T
Therefore, (y| = 1 [t

Therefore | i= eigenvecior
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In Exercises 15-16, find the eigenvalues and a basis for each
eigenspace of the linear operator defined by the stated formula.
[Suggestion. Work with the standard matrix for the operator.]

16. T(x,y,2) =2x—y—2z,x—2z, = x +y +22)

16. Given linear transformation is T(x,y,2) = (2x —y — 5,x— %, X+ ¥y + 2z).
To find standard matrix for T:

T(1,0,0) = (2,1,—1); T(0,1,0) = (—1,0,1) ; T(0,0,1) = (—1,—1,2)
2

(
Standard matrixfor T=A=1{1 0 -1
-1 1 2
Here eigenvalues and eigenvectors of & and T are zame. Hence there basiz for each eigenspace is same.(For this we only write column vector to row
vector)
To find eigenvalues of A:
2—-A -1 -1

det{A—;\I]:{ 1 —A —1]

-1 1 2—-A
=2-A)[-A2-A)+1+12-A-1]-[1-4]
=(2-A)[AR-22+1] +(-A+1)—(-A+1)
=(2-A)(A-A-A+1)
=@2-AAMA-1)—-(A-1))
=(2-A)A-1)
Eigenvalues of 4 are 1,2.

To find Basis for each eigenspace:
ForA=2

0o -1 -1
A-2I=}1 -2 -1

-1 1

0 -1 -1 1 -2 -1 1 -2 -1
1 -2 -1} +Re+<=Ry—-}{0 -1 -1 -Ra+R;,—-Ra— |0 1 1
-1 1 0 0 -1 -1
1 0 1
—+R;+2Rs,Ra+Ra— |0 1 1
0 0 0
1 0 1} (= 0
0 1 1}|{y| = |0} =zisafreevariable. Puiz=t=x=—t,y=—t
0 0 0] [= 0
T —t -1
= lyl = |-t} =t}-1
z t 1
—1
Basis for eigenspace corresponding to eigenvalue A = 21is = -1
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ForA=1.
1 -1 -1
A+I=11 -1 -1
-1 1 1
1 -1 -1 1 -1 -1
1 -1 -1} —+Ra—Ry,Ra+R;— |0 0 0
-1 1 1 0o 0 0
1 -1 1) (= 0
0 0 0 y| = |0| = y,zare freevariables. Pty =s,z=t=x=s5+t
0o o0 0 z 0
T s+1 1 1
Hence {yl =} s | =sili +t{0
z t 0 1

1 1
Basis for eigenspace corresponding to eigenvalue A = 1is={ {1}, {0} }
0 1
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33. Prove: If X 1s an eigenvalue of an invertible matrix A and x is
a corresponding eigenvector, then 1/ is an eigenvalue of A™!
and x 1s a corresponding eigenvector.

A& walue his an eigenvalue of a matrix A with corresponding eigenvector x iff they satizsfy the equation

hx = Ax.

We are given this to start with. Left-multiply both sides by A, which we know to exist as A is specified as invertible:

A= atax,

Scalar multiplication is commutative with matrix multiplication so the A can move out in front. We also know that A4 = |, the identity matrix.
A= Ix

M =x

Multiply both sides by 1/A:

[1FNAR S = [1/A)x

A= (17A)x

This exactly fits the equation needed to show that 1/A is an eigenvalue for A with corresponding eigenvector x.
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38. (a) Prove that if A is a square matrix, then A and AT have
the same eigenvalues. [Hint: Look at the characteristic
equation det(A] — A) = 0]

(b) Show that A and AT need not have the same eigenspaces.
[Hint: Use the result in Exercise 30 to find a 2 x 2 matrix
for which A and AT have different eigenspaces.]

1

The matrix A — [ 0 i ] , and its transpose A", have only one eigenvalue, namely 1. However, the

eigenvectors of A are of the form [ :] , whereas the eigenvectors of AT are of the form [ 0] .
a
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5.2 Diagonalization

In Exercises 1-4, show that A and B are not similar matrices.

DEFINITION 1 If A and B are square matrices, then we say that B is similar to A if
there is an invertible matrix P such that B = PIAP.

Table T Similarity Invariants

Property Description

Determinant A and P7'AP have the same determinant.

11 1 0
1. A = . B =
R

Two matrices are similar if their determinants are the same, otherwise, they are said to be

Non-Similar matrices.

Solution: DeterminantofA=2=x1—-3 x 1

—2-3 =1

DeterminantofB= —2 x1 -3 x 0
—2—-0=-2

Det. A £ Det. B

s 8 and B are not similar matrices.
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Expand the determinant by Column 1

1 1
Det. A =1 x
0 1

—1(1-0)—0+0
—1

2 3
0 1

‘—{I:-q

23‘

+ 0 x
‘ 1 2

=

Il
(=T L
=T
= o =

Expand the determinant by column 3

Det.B =10 x —I—lx

(——w)

. A and B are not simllar matrices.

1
z

1
-i ‘

!

(1—1)
Det. A # Det. B
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In Exercises 5-8, find a matrix P that diagonalizes A, and
check your work by computing P~'AP.

[2 0 —21
7.A=10 3 0

Lo

0 3J
consider
det(A —AI):I‘J
2—-A 0 -2
= 0 3—-A 0 |=0

0 0 3-A4
=(2-2)[(3-2)(3-2)][+0=0
=(2-2)(3-2)(3-2)=0
= A1=2.3.3

These are eigenvalues

Now we find eigenvector comresponding to eigenvalues

(a)4 =2

2-2 0 27700 2
=l 0 3-2 0 |={0o 1 o0
0 0 3-2| |0 0 1
0 0 -2 [0 0 -2 01 0
meflo 1 0 |—2" 50 1 0 |—sl0 0 —2
0 0 1 00 0 00 0
m 0 1 0
— 22500 0 1
00 0
00 2] o1 0
—rref[0 1 0|=0 0 1
00 1] (000
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Therefore to find eigenvector
01 0 0

0 0 1ffv, =0

0 0 0, 0

= v, =0.v, =0.v, 1s arbritrary.
Ifv, =t

Therefore

-1 0 2 I 0 2
—mef| 0 0 0 [=/0 0 0
0 0 0 0 00
Therefore to find eigenvector
1 0 2|~ 0
0 0 0fv,|=[0
0 0 0} 0
= +2v, =0= v, =-2v, v,.v, is arbritrary.

Ifv, =t.v, =5
Therefore
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—25 0 -2
V=t |=|1|t+]| 0 |s
5 0 1

1
Eigenvalue: 2. Eigenvector:| 0
0

0
Eigenvalue: 3. Eigenvector:| 1 |.| 0
0

. o . th .
We form the matrix P, whose i” column is i eigenvector.

1 0 -2
—P=(0 1 0
00 1
We form the diagonal matrix D. whose element at row i is i eigenvalue.
2 00
— D=0 3 0
0 0 3

These matrices has proprty that D = P AP
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[4 0 1'|
A=12 3 2

1 0 4
(a) Find the eigenvalues of A.

9, Let

(b) For each eigenvalue A, find the rank of the matrix A/ — A.

(¢) Is A diagonalizable? Justify your conclusion.
Remark Part (a) of Theorem 5.2.2 is a special case of a more general result: Specifically, if

Als Ao, ..., A are distinct eigenvalues, and it Sy, S5, ..., Si are corresponding sets of linearly
independent eigenvectors, then the union of these sets is linearly independent.

Given a matrix A =

= bD
= L 2
o e B

() Find eigenvalues of A

For any matrix M eigenvalues are roots of det (M — AI) = 0 where Iis the identity matrix.

Eigenvalues of A are det (A — AI) =0

10 1 1 00]] [4-A 0 1
det(A-AD=|[2 3 2] —aAflo 1 of|=] 2 3-A

1 0 4 0o 01 1 0 4 A
det(A —AI) = (4 A)((3—A)4d—A) —0x2)—04+1(2x0—1(3 — A)
det{A_M}={4_1}ﬂ{3_.h)_{3_1}:{3_1}({4_112_1)={3_AJ(A9—3A+16_1)
det (A — AT) = (3 — A)(A2 — 3A —5A+ 15) = (3 — A)(A — 3)(A — 5)

Roots of det (A — AI) = 0: roots of (3 — l}ﬂ{ﬁ —A)=0are A=3,3,5

Eigenvalues of A are 3,5
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(b) For each eigenvalue A find the rank of the matrix AL — A

1 0 0 4 0 1 [3 0 0 4 0 1
ForA=3AI-A=3{0 1 O0f{—1{2 3 2{=10 3 0}—12 3 2
0o 01 1 0 4 0 0 3 1 0 4
3—-4 0 -1 -1 0 —1]
M—-A=} -2 3-3 -2}|=1{-2 0 -2
-1 0 a—4 -1 0 —1]
-1 0 -1
We will perform row operationson | —2 0 —2} and find its rank.
-1 0 -1
-1 0 -1 -1 0 -1
Ry -+ Ry — 2R,
Apply R R {242 0 —-24+2{ =10 0 0O
pmem) ol 101 0 141 0 0 0

Sorank of 31 — A iz 1. Nullity of the matrix 31 — A = dimension-rank=3 —-1=2
Nullity of AL — A will give the dimension of the eigenspace of eigenvalue A

So dimension of the eigenspace of eigenvalue A = 3is 2

1 0 0 4 0 1 (5 0 0 4 0 1
ForA=5AM—-A=5{0 1 0}—-12 3 2|=10 5 0f—1{2 3 2
o001 1 0 4 0 0 5 1 0 4
5h—4 0 —1 1 0 —1]
M-A=}| 2 5-3 -2}|=1-2 2 -2
-1 0 h—4 -1 0 1]
i 0 -1
We will perform row operationson | —2 2 =21 and find its rank.
-1 0 1
1 0 -1 -1 0 -1
H; —+ Ry + 2R,
Apply R Rt R {242 2 -2-2f=10 2 -4
Py ol 1010 141 0 0 0

So rank of 51 — A is 2. Nullity of the matrix 5 — A = dimension-rank=3 -2=1

So dimension of the eigenspace of eigenvalue A = 5is 1
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() Is A diagonalizable?

& matrix is diagonalizable if the sum of dimensions of the eigenspaces of each eigenvalue of the matrix i= equal to the order of the matrix.
Sum of dimensions of the eigenspaces of each eigenvalue of A=24+1=3

Order of the matrix A = 3

So the sum of dimensions of the eigenspaces of each eigenvalue of A is equal to the order of A.

So matrix A is dlagenallzable
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consider
det(A—-Al)=

4-2 0 1
=2 3-2 2 |=0

1 0 4-2
:»(4—,1)[(3—,1)(4—,1)—1]+0+1[—(3—,1)]=0
=(4-2)[(3-2)(4-2)-1]-(3-2)=
= -2 +1112 -394+45=0
= A 1117 +394-45=0
=(A-5)(A-3)(A-3)=
> A=95.3.3
These are eigenvalues

Part b)

Now we find eigenvector corresponding to eigenvalues

(a)4 =5
4-4 0 1 -1 0 1
= 2 3-4 2 |=|2 -2 2
0 4- 0 -1
1 0 -1
Dnef 01 2
A T

Therefore for A, =5
Rank(AI-4)=2
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Therefore to find eigenvector
1 0 -1|» 0

1
ﬂ ] —2 1‘2 = ﬂ
00 0w [0

= =v,,v,=2v

..V, 1s arbritrary.

Ifv, =¢
Therefore
t 1
V=|2t|=|2|t
t 1
(D)4, =3
4—-4A 0 1 1 0 1
= 2 3-4 2 |=|2 0 2
1 0 4 1 0 1

—rref |2 0 2|=
1 0 1

Therefore for A, =3

Rank(AI—4)=1

—A

1 0 1| |1 0 1
0
0

Therefore to find eigenvector
1 0 1]y 0

0 0 0}j»v,|=|0

0 0 0ffw, 0

3
=y +v, =0 v, = v, v,.v, is arbritrary.
Ifv, =t.v, =5

Therefore
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—s 0 -1
V=t |=[1|t+]0|s
s 0 1
Part C-
Eigenvalue: 5.Eigenvector :| 2
_l—
0] [-1
Eigenvalue:3.Eigenvector:|1 |,| 0
0 1

Since for each eigenvalue of the matrix A we get
(algebraic multiplicity) =(Geometric multiplicity )
Hence matrix A is diagonalisable.

We form the matrix P. whose i” column is i” eigenvector.

1 0 -1
=>P=|2 1 0
1 0 1
We form the diagonal matrix D. whose element at row i is i” eigenvalue.
500
=>D=(0 3 0
0 0 3

These matrices has proprty that D = P AP
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In Exercises 11-14, find the geometric and algebraic multiplic-
ity of each eigenvalue of the matrix A, and determine whether A
is diagonalizable. If A i1s diagonalizable, then find a matrix P that
diagonalizes A, and find P~'AP.

[—1 4 —2"‘
1.A=1-3 4 0
-3 1 3J

There is some terminology that is related to these ideas. If A is an eigenvalue of an
n x n matrix A, then the dimension of the eigenspace corresponding to i, is called the
geometric multiplicity of Ly, and the number of times that A — Ay appears as a factor in
the characteristic polynomial of A is called the algebraic multiplicity of iy. The following
theorem, which we state without proof, summarizes the preceding discussion.

THEOREM 5.2.4 Geometric and Algebraic Multiplicity

If A is a square matrix, then:

(a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the
algebraic multiplicity.

(h) A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is
equal to the algebraic multiplicity.

To find the elgenvalues of A :
Set up the formula to find the characteristic equation,

p(}) = det (A AL)

—1-XA 4 —2
—det{ -3 4-X 0
-3 1 3-A
— A6 —11A+6

Set the characteristic polynomial equal to 0 to find the eigenvalues A .
AT+ B6AT—11A+6=0

A-1DA-2A-3)=0
A=1,2,3

Therefore, the eigenvalues of Aare- 1,2 and 3 and all have algebric multiplicity 1 and since all are distingt, So the geometric multislicity is also
1 for each eigenvalue.
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To find elgenvector corresponding to each elgenvalue:

Explanation:

The eigenvector iz equal to the null space of the matrix minus the eigenvalue times the identity matrix .

Find the eigenvector using the eigenvalue A = 1 . Let v; be the eigenvector corresponding to A = 1, then

1-1 4 -2
3 4-1 0 |v=0
-3 1 31|

—2 4 2]

3 3 0]v=0

3 1 2|

Multiply each element of R, by ——% Ry =Ry — %Rl Ry =Rz — %Rl
1 -2 1
0o -3 3
0 —5 5

Multiply each element of Raby —¢ ,Ra=Ra— 3Ra, Ry = Ry — %RE
1 0 -1
01 -1
0 0 0

lse the result matrix to declare the final solution to the system of equations.
x—z=0
vy—z=10
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Write the solution as a linear combination of vectors.

T 1
yl =21
1

[

1
Therefore, the eigenvector correspondingto A=1is: vy = |1

1
Similarly, find the eigenvector using the sigenvalue A = 2

Vg —

== alea

Find the eigenvector using the eigenvalue A = 3 .

1
1
Vg — %
1
2 1
1 7 3
Andthe matrixP = |1 1 %
1 1 1

To find the inverse of P set up a 3 x 6 matrix where the left half is the original matrix and the right half is its identity matrix.

2 1

12 1100
11 2 010
111001

Find the reduced row echelon form.

Performthe row operation Re=Ra —R; . R =Ry — R; .

12 1 1 00
01 3 330
1 3

01 2 101
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Perform the row operation Ra = R — Ra

1 2 1 1 o0 o
01 3 -3 3 0
00 §+ 0 -11

Multiply each element of Raby 4, Ro = Ra — %RL R;=R; - 1—1,ER3

2

1 20 1 1 -1
010 -3 9 —6
00 1 0 -4 4

Perform the row operation Ry, = Ry — %Rﬂ
1 00 3 -5 3

010 —3 9 -6
o 01 0 -4 4

The right half of the reduced row echelon form is the inverse

3 -5 3
Pl=|-3 9 _—&
D —4 4

The matrix D is formed by the sigenvalues of A :

1 0 0
ThematrixDis:D= {0 2 0
o o0 3
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21. Find A" it n 1s a positive integer and

Aat((A-xE) =2
7 @’”\) ((Q"V (@;5)~,)

N LA : :
[ (@-2) .( £~sA+A%1) +(2~3) =

4((5_3) :_9 '

c r( rA' ',7:\" (Al (')\-l» & ¢ %
N2 A=sats) 1 (p-8) 2

=203

\
(7 (7\",?) I'\/.”?‘/”JF;A*}" "LQ =4

) (?r—a) (r-;\"—fmw) =




CHAPTER 5: Eigenvalues and Eigenvectors




CHAPTER 5: Eigenvalues and Eigenvectors




CHAPTER 5: Eigenvalues and Eigenvectors




CHAPTER 5: Eigenvalues and Eigenvectors




CHAPTER 5: Eigenvalues and Eigenvectors

37. Prove thatif A is diagonalizable, then sois A* for every positive
integer k.

Since A is diagonalizable, there exists an invertible matrix P and a diagonal matrix D such that A = PDP .
First we show that, A* = PD*P, where kis a positive integer.
Let P(k) be the statement A® = PD*P 1,
Now A* = (PDP ') (PDP ')
=PD(P 'P)DP*
= PDP ! since P 'P =1
so A* = PDP !
So P(2) is true.
Let us assume that P(m) is true
So A™ =PD"P !
Now A™H = A™. A
= (PD"P ') - (PDP )
=PD™(P'P)DP’
= PD™DP !
=ppmHipt
So P(m + 1) is true if P(m) is true.
So by mathematical induction P(k) is true for all positive integers. k.
Hence A* = PDFP!

Since D is a diagonal matrix, D*is also a diagonal matrix.
So there exists a invertible matrix P and a diagonal matrix DF such that A* = PD*P 1.
This shows that the matrix A¥is diagonalizable.
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Useful links:

https://atozmath.com/Menu/MatrixAlgebra.aspx



https://atozmath.com/Menu/MatrixAlgebra.aspx

