Q1: Suppose $(1,2,3)$ is a solution of the following linear system:

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=b_{1} \\
& 2 x_{1}+3 x_{2}-3 x_{3}=b_{2}
\end{aligned}
$$

Find the values of b_{1}, b_{2}. (2 marks)

Answer: $b_{1}=1+4-3=2$ and $b_{2}=2+6-9=-1$
Q2: Show that the matrix A is invertible, where $A^{2}+3 A=B$ and $\operatorname{det}(\mathrm{B})=2$.
(2 marks)
Answer: $A(A+3 \mid)=B$ implies $|A||A+3||=|B|=2$ which implies $| A \mid$ is nonzero and hence A is invertible.

Q3: Let V be the subspace of \mathbb{R}^{3} spanned by the set $S=\left\{v_{1}=(1,2,3), v_{2}=(2,4,6)\right.$, $\left.v_{3}=(4,6,6)\right\}$. Find a subset of S that forms a basis of V. (4 marks)

Answer:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 4 & 6 \\
3 & 6 & 6
\end{array}\right] \xrightarrow[-3 R_{13}]{-2 R_{12}}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & -2 \\
0 & 0 & -6
\end{array}\right]} \\
& \xrightarrow{-1 / 2 R_{2}}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & 1 \\
0 & 0 & -6
\end{array}\right] \xrightarrow{6 R_{23}}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Since columns 1 and 3 have leading ones, then v_{1} and v_{3} forms a basis of V.

Q4: Show that $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & 2 & -1\end{array}\right]$ is diagonalizable and find a matrix P that diagonalizes A. (6 marks)

Answer:

$$
\begin{aligned}
& 0=\left|\begin{array}{ccc}
\lambda-1 & -2 & 2 \\
0 & \lambda-1 & 0 \\
0 & -2 & \lambda+1
\end{array}\right|=(\lambda-1)(\lambda-1)(\lambda+1) \\
& \lambda= \pm 1
\end{aligned}
$$

At $\lambda=1$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -2 & 2 \\
0 & 0 & 0 \\
0 & -2 & 2
\end{array}\right] \xrightarrow{-1 R_{13}}\left[\begin{array}{ccc}
0 & -2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{-1_{2} R_{1}}\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& x_{1}=s \in \mathbb{R}, x_{2}=x_{3}=t \in \mathbb{R} \\
& E_{1}=\left\{\left[\begin{array}{l}
s \\
t \\
t
\end{array}\right]: s, t \in \mathbb{R}\right\}=\left\{s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]: s, t \in \mathbb{R}\right\}
\end{aligned}
$$

At $\lambda=-1$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-2 & -2 & 2 \\
0 & -2 & 0 \\
0 & -2 & 0
\end{array}\right] \xrightarrow[-1 R_{23}]{-1 R_{21}}\left[\begin{array}{ccc}
-2 & 0 & 2 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] \xrightarrow[-1 / 2 R_{2}]{-1 / R_{1}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& x_{1}=x_{3}=t \in \mathbb{R}, x_{2}=0 \\
& E_{-1}=\left\{t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]: t \in \mathbb{R}\right\}
\end{aligned}
$$

Since A has three independent Eigen vectors, it is diagonalizable and

$$
P=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Q5: Assume that the vector space \mathbb{R}^{3} has the Euclidean inner product. Apply the Gram-Schmidt process to transform the following basis vectors ($1,-2,0$), ($2,1,-1$), ($0,1,1$) into an orthonormal basis. (8 marks)

Answer: Let $\mathrm{v}_{1}=(1,-2,0), \mathrm{v}_{2}=(2,1,-1), \mathrm{v}_{3}=(0,1,1)$.

Now define u_{1}, u_{2} and u_{3} as follows:

$$
\begin{aligned}
& u_{1}=v_{1}=(1,-2,0) \\
& u_{2}=v_{2}-\frac{\left\langle v_{2}, u_{1}>\right.}{\left\|u_{1}\right\|^{2}} u_{1}=(2,1,-1)-0=(2,1,-1) \\
& u_{3}=v_{3}-\frac{\left\langle v_{3}, u_{2}>\right.}{\left\|u_{2}\right\|^{2}} u_{2}-\frac{\left\langle v_{3}, u_{1}>\right.}{\left\|u_{1}\right\|^{2}} u_{1} \\
& =(0,1,1)-0-\frac{-2}{5}(1,-2,0)=\left(\frac{2}{5}, \frac{1}{5}, 1\right) \\
& w_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}=\frac{1}{\sqrt{5}}(1,-2,0) \\
& w_{2}=\frac{u_{2}}{\left\|u_{2}\right\|}=\frac{1}{\sqrt{6}}(2,1,-1) \\
& w_{3}=\frac{u_{3}}{\left\|u_{3}\right\|}=\frac{\sqrt{5}}{\sqrt{6}}\left(\frac{2}{5}, \frac{1}{5}, 1\right)
\end{aligned}
$$

So $\left\{w_{1}, w_{2}, w_{3}\right\}$ is the wanted orthonormal basis.
Q6: Let V be an inner product space, let v_{o} be any fixed vector in V, and let $T: V \rightarrow \mathbb{R}$ be the map defined by $T(v)=\left\langle v, v_{o}\right\rangle$ for all v in V. Show that:
(a) T is a linear transformation. (4 marks)
(b) If $v_{o} \in \operatorname{ker}(T)$, then $v_{o}=0$ and $\operatorname{ker}(T)=V$. (2 marks)

Answer: (a) For any u and v in V and any real number k we have:
(1) $T(u+v)=\left\langle u+v, v_{0}\right\rangle=\left\langle u, v_{0}\right\rangle+\left\langle v, v_{0}\right\rangle=T(u)+T(v)$
(2) $T(k u)=\left\langle k u, v_{0}\right\rangle=k\left\langle u, v_{0}\right\rangle=k T(u)$
(b) v_{o} belongs to $\operatorname{ker}(\mathrm{T})$ implies that $0=\mathrm{T}\left(\mathrm{v}_{\mathrm{o}}\right)=\left\langle\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{\mathrm{o}}>\right.$ which implies that $\mathrm{v}_{\mathrm{o}}=0$.

So for all v in $\mathrm{V}: \mathrm{T}(\mathrm{v})=\left\langle\mathrm{v}, \mathrm{v}_{\mathrm{o}}\right\rangle=\langle\mathrm{v}, 0\rangle=0$ and hence $\operatorname{ker}(\mathrm{T})=\mathrm{V}$.
Q7: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by:
$T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2},-2 x_{1}, x_{1}+x_{2}\right)$.
(a) Find $[T]_{S, B}$ where S is the standard basis of \mathbb{R}^{3} and $B=\left\{V_{1}=(1,1), V_{2}=(1,0)\right\}$. (4 marks)
(b) Show that T is one-to-one. (2 marks)

Answer: (a) $\mathrm{T}(1,1)=(2,-2,2)$ and $\mathrm{T}(1,0)=(3,-2,1)$. Hence

$$
[T]_{S, B}=\left[[T(1,1)]_{S} \mid[T(1,0)]_{S}\right]=\left[\begin{array}{cc}
2 & 3 \\
-2 & -2 \\
2 & 1
\end{array}\right]
$$

(b) $(0,0,0)=T(x, y)=(3 x-y,-2 x, x+y)$ implies $3 x-y=0,-2 x=0, x+y=0$. So $x=0$ and hence $\mathrm{y}=0$. Thus $\operatorname{ker}(\mathrm{T})=\{0\}$ and T is $1-1$.

Q8: Show that:
(a) If $T: V \rightarrow W$ is a linear transformation, then the kernel of T is a subspace of V. (2 marks)
Answer: $\mathrm{T}(0)=0$ implies $\operatorname{ker}(\mathrm{T})$ is not empty.
For all u and v in $\operatorname{ker}(T)$ and a real number k we have:
$T(u+v)=T(u)+T(v)=0+0=0$, so $u+v$ is in $\operatorname{ker}(T)$.
$T(k u)=k T(u)=k 0=0$, so $k u$ is in $\operatorname{ker}(T)$.
Thus, $\operatorname{ker}(T)$ is a subspace of V.
(b) If 1 and -1 are the eigenvalues of a square matrix A of order 2 , then we have that $\mathrm{A}^{100}=\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. (2 marks)
Answer: As 1 and -1 are distinct eigenvalues, So A is diagonalizable and A is similar to $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ such that $A=\mathrm{PDP}^{-1}$. So $\mathrm{A}^{100}=\mathrm{PD}^{100} \mathrm{P}^{-1}=\mathrm{PIP}^{-1}=\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(c) If u and v are orthogonal vectors in an inner product space, then: $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .(2$ marks $)$

Answer: As u and v are orthogonal, so $<u, v>=0$ and hence:

$$
\begin{aligned}
& \|u+v\|^{2}=<u+v, u+v> \\
& =<u, u>+<u, v>+<v, u>+<v, v> \\
& =<u, u>+<v, v>=\|u\|^{2}+\|v\|^{2}
\end{aligned}
$$

