الباب الثاني

الأعداد الحقيقية

تمارين الباب الثاني

وجدت $\sup A, \inf A, \max A, \min A$ وجدت الآتية إن وجدت.

$$A = \left\{1 - \frac{(-1)^n}{n} : n \in \mathbb{N}\right\} \star (1)$$

 $\sup A = 2, \inf A = \frac{1}{2}.$

Sol: If we denote $E_1 = \{1 + \frac{1}{2n-1}, n \in \mathbb{N}\}$ and $E_2 = \{1 - \frac{1}{2n}, n \in \mathbb{N}\}$, then $E = E_1 \cup E_2$ it is clear that $\frac{1}{2} \in 1 - \frac{1}{2n} < 1 < 1 + \frac{1}{2n-1} < 2$ this inequality shows that if $x \in E$, then $\frac{1}{2} < x < 2$ with equality at y = 1 (or y = 1 and y = 2 for E) So Sup E = 2, man E = 2; $\inf E = \frac{1}{2}$, $\min E = \frac{1}{2}$

$$S = \{1 - (-1)^n / n : n \in \mathbb{N}\}.$$

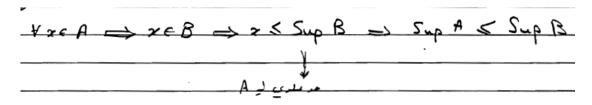
Find $\inf S$ and $\sup S$ and prove your answers.

Solution We claim that $\inf S = 1/2$ and $\sup S = 2$. Note that, if n is odd, $1 - (-1)^n/n = 1 + 1/n$, while, if n is even, $1 - (-1)^n/n = 1 - 1/n$. It follows, if n is odd, that $1 - (-1)^n/n > 1 > 1/2$. If $n \ge 2$ is even,

$$1 - (-1)^n/n = 1 - 1/n \ge 1 - 1/2 = 1/2.$$

Arguing similarly, $1 - (-1)^n/n \le 2$ and so 1/2 and 2 are, respectively, lower and upper bounds for S. Since $1/2 \in S$, there cannot be a lower bound m > 1/2 and so 1/2 is the greatest lower bound for S, i.e. inf S = 1/2. Since $2 \in S$, there cannot be a upper bound M < 2 and so 2 is the least upper bound for S, i.e. sup S = 2.

$$A = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\} \star (\tau)$$


- A=B-B where $B=\{rac{1}{n}:n\in\mathbb{N}\}$ and $X-Y=\{x-y:x\in X,y\in Y\}.$
- $\inf B = 0$, $\sup B = 1$. ($\inf B = 0$ is the Archimedean property.)
- $\inf(X Y) = \inf X \sup Y$ implies $\inf A = \inf B \sup B = 0 1 = -1$.
- $\sup(X Y) = \sup X \inf Y$ implies $\sup A = \sup B \inf B = 1 0 = 1$.

$$A = \{x \in \mathbb{R} : x^2 - 4 < 0\} \star (\mathbf{a})$$

Since $x^2 - 4 < 0 \iff x^2 < 4 \iff -2 < x < 2$ we see that E = (-2, 2). Using Q4 we get:

 $\sup E = 2$, $\inf E = -2$, $no \max E$ and $no \min E$.

ان $A\subset B$ فأثبت أن $A\subset B$ بحموعتين محدودتين، وكان $A,B\subset \mathbb{R}$ فأثبت أن $A \subseteq \operatorname{Sup} A$

بانت $A+B=\{a+b:a\in A,b\in B\}$ عدودة، ثم أثبت أن $A+B=\{a+b:a\in A,b\in B\}$ عدودة، ثم أثبت أن \star إذا كانت \star \star إذا كانت \star عدودة، ثم أثبت أن

Yach ack, Wzch+B
VacA aKK, VzcA+B VbeB bEL => z-a+b K+L
م (A+B) عبدة من اعلى
AZEA+B as SupA bs SupB
VZEA+B as Sup A , Sup B
(A+B) _1 code as Sup (A) + Sup B
Sup(A+B) ≤ Sup A + Sup B

0 « 5 μp(A) + S μp B _ S μp (A+B)(1)
4 + A - O E - S - A - E - A - A - E - A - A - A - A - A
3-8 que < 6 = 3-8 que < 5 = 8 que < 6 = 5 = 8 que < 7
Sup (A+B) > 3+b. > Sup A + Sup B - E
Sup (A+B) > Sup (A) + Sup B - E
Sup (A) + Sup (B) - Sup (A+B) < ε (2).
0 < Sup (A) + Sup(B) _ Sup (A+B) < &
Sup (A) + Sup B - Sup (A+B) =0
Sup(A+B) = Sup (A) + 2 up (B)

المتتاليات

تمارين 3.1

أثبت ما يلي باستخدام التعريف:

$$\lim_{n \to \infty} \frac{2n-1}{3n+2} = \frac{2}{3} \qquad \star (1)$$

$$.\lim \frac{n^3 + 1}{2n^3 + n} = \frac{1}{2} \qquad \star \quad (\mathfrak{z})$$

المتالية (x_1,y_1,x_2,y_2,\ldots) المتالية ($\lim y_n=L$ متقاربة ونهايتها المتالية دنهايتها دم المتالية ونهايتها .5

0° 3:1(5) 2n → L ⇒ , Qi S N ∈ N , pou €>0 M Jn - L = : Cas NeN sees No No $\frac{1}{2} = \begin{cases}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac$

تمارين 3.2

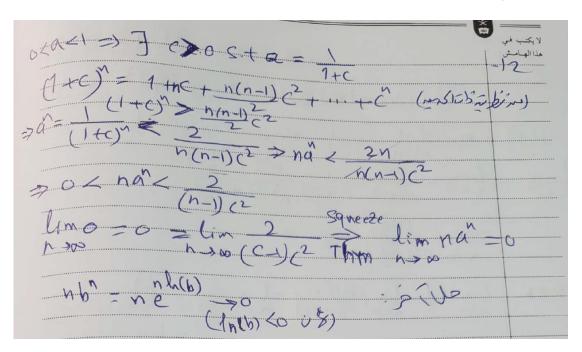
1. بين ما إذا كانت (x_n) متتالية متقاربة أم (x_n) متتالية إن وجدت.

$$x_n = \frac{n^2 + 1}{n^3 + n} \qquad \star \quad \text{(I)}$$

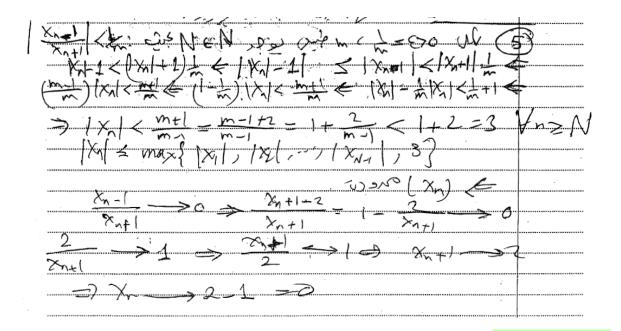
	21/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
1(P)	Y net
,	$n = n^3 + n$ $n^2 + 1 = n^2 + 1 = n^2 + 2$
limx	lain - Dall - Lan
n-200	1+L
	=1:0 7+ 12 = 0
	~ mn(1+ta)

$$x_n = \frac{(-1)^n n}{3n - 1} \qquad \star \quad (z)$$

	N 1- 5
110)	lim (X) = [m/c]m/ = [m/m/3-1]
166	NX NX 3N-1 NX 3N-1 NX NX
***************************************	1/20 (-D'N N 1 E Ca class) - 370
	The contract of the contract o
***************************************	1 3 0 3 n - 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (
	lin X
	20 3 now 2016
***************************************	in (X) (prog his - as it ful)


3. أعط مثالاً لما يلي:

متباعدة،
$$(x_n)$$
 متباعدة، (x_n+y_n) متباعدة، (x_n) متباعدة، (x_n) متباعدة،

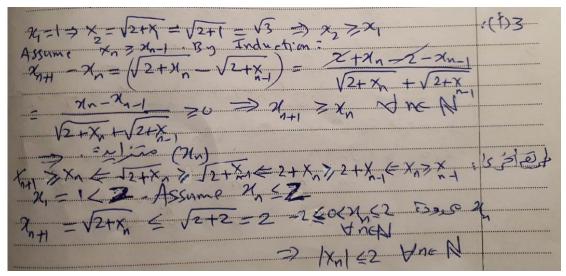

$(?)3 \qquad \times_{\Lambda} = n, y_1 = n \qquad 2 \times_{\Lambda} + y_1 = n \qquad n = 0 \rightarrow 0 (?)$
Name of the second seco

9. \star إذا كانت (x_n+y_n) متقاربة و (x_n) متقاربة، فأثبت أن (y_n) متقاربة، هل نستطيع استنتاج نتيجة مشابهة للمتتالية (x_n+y_n) ?

 $\lim na^n = 0$ فأثبت أن 0 < a < 1 کان \star .12

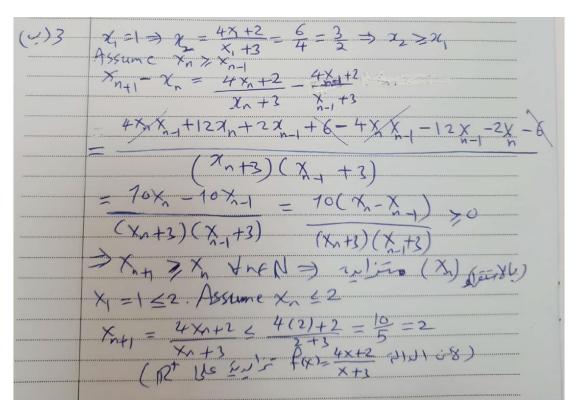
10. * إذا كانت $\frac{x_n-1}{x_n+1}=0$ فأثبت أن (x_n) محدودة، ثم أثبت أن نهايتها تساوي 1.

تمارين 3.3

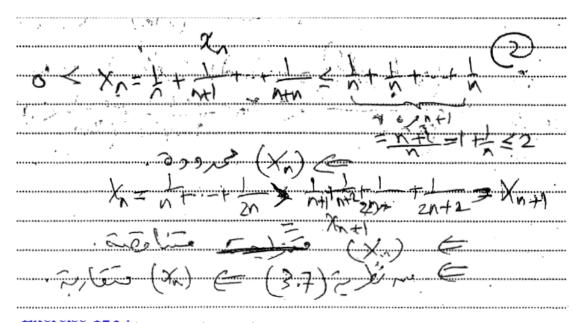

1. أثبت أن المتتالية (x_n) مطردة حيث

$$x_n = \frac{n^n}{n!}$$
 \star (Ξ)

$$\frac{2(n+1)^{n+1}}{2(n+1)!} = \frac{(n+1)^{n}(n+1)}{(n+1)!} = \frac$$


3. أثبت أن المتتالية (x_n) مطردة ومحدودة ثم أوجد نهايتها.

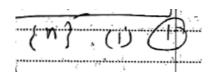
$$x_1 = 1, \ x_{n+1} = \sqrt{2 + x_n}$$
 * (1)



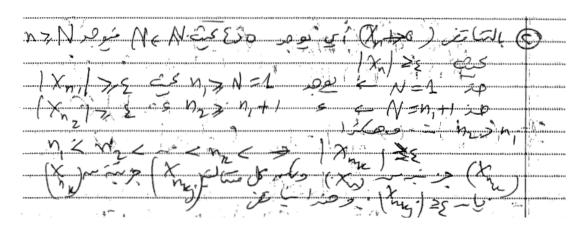
$$\lim_{N\to\infty} \frac{1}{N} = \lim_{N\to\infty} \frac{$$

$$x_1 = 1, \ x_{n+1} = \frac{4x_n + 2}{x_n + 3}$$
 $\star (\psi)$

٠٠. إذا كانت $\frac{1}{2n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$ ، فأثبت أن (x_n) متناقصة ومحدودة وبالتالي متقاربة.



 $x_{n+1} - x_n = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n} \le 0$, then the sequence $(x_n)_n$ is decreasing and non negative. It is convergent.


تمارين 3.4

أعط مثالاً لما يلي:

(۱) * متتالية ليس لها متتالية جزئية متقاربة

انت کل متتالیة جزئیة من (x_n) لها متتالیة جزئیة متقاربة إلى 0، فأثبت ان (x_n) د. \star إذا كانت كل متتالیة جزئیة من

بيت أن المتتالية (x_n) لها متتالية جزئية متقاربة حيث \star .7

$$x_n = \frac{(n^2 + 20n + 30)\sin(n^3)}{n^2 + n + 1}$$

 $\lim_{n\to\infty}\frac{n^2+20n+35}{n^2+n+1}=\lim_{n\to\infty}\frac{1+\frac{20}{n}+\frac{35}{n^2}}{1+\frac{1}{n}+\frac{1}{n^2}}=1,\ and\ every\ convergent\ sequence\ is\ bounded,\ therefore\ \left\{y_n=\frac{n^2+20n+35}{n^2+n+1}\right\}\ is\ bounded,\ so\ there\ exists\ M\in\mathbb{R}\ such\ that\ |y_n|\le M\ for\ all\ n\in\mathbb{N}.\ Also,\ \{z_n=\sin(n^3)\}\ is\ bounded:\ |z_n|\le 1\ for\ all\ n\in\mathbb{N}.\ Therefore\ \{x_n\}\ is\ bounded:\ |x_n|=|y_nz_n|=|y_n||z_n|\le M\ for\ all\ n\in\mathbb{N}.\ Every\ bounded\ sequence\ has\ a\ convergent\ subsequence,\ thus\ \{x_n\}\ has\ a\ convergent\ subsequence.$

تمارين 3.5

به أثبت أن المتتالية (x_n) من نوع كوشي \star .1

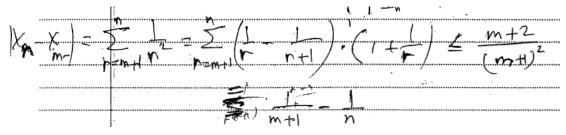
$$x_n = \frac{5n}{n+3}$$

600 } NEN SIT :
$$f n, m \ge N$$

| $\frac{5n}{n+3} - \frac{5m}{m+3} = \frac{15nm+15n-5mn-15m}{(n+3)(m+3)}$

= $\frac{15(n-m)}{(n+3)(m+3)} < \frac{15(n-m)}{n \cdot m} = 15(\frac{1}{m} - \frac{1}{n})$
 $< 15(\frac{1}{n} + \frac{1}{m})$
 $< 15(\frac{1}{n} + \frac{1}{m})$

 $|x_{n+1} - x_n| < \frac{1}{2n}$


بالية تحقق (x_n) متتالية تحقق \star .2

https://youtu.be/svGyTISaMg8

٠٠. أثبت أن المتتالية $\frac{1}{k^2}$ من نوع كوشي. \star .6

Solution: Given E70, we look for NEN s.t. 1xn-xm < V n,m > N. First assume n=m (without loss of generality) $|x_n - x_m| = \left| \frac{1}{12} + \frac{1}{2^2} + \dots + \frac{1}{m^2} + \frac{1}{m+1} + \frac{1}{m^2} + \dots + \frac{1}{m^2} \right|$ = | 1/m+1)2+ ... + 1/2 = 5 L < 5 L $= \sum_{k=m+1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right)$ = 1-1 4 h + m By AP, for & >0 3 NEW St= \$>N Now for n,m=N= |xn-xn| = 1+1 < + + + = 2 < e.

حلول أخرى:

 $\sum_{k=n}^{n+m} \frac{1}{k^2} \leq \sum_{k=n}^{n+m} \frac{1}{k(k-1)} = \sum_{k=n}^{n+m} (\frac{1}{(k-1)} - \frac{1}{k}) = \frac{1}{n-1} - \frac{1}{n+m} \xrightarrow[n \to +\infty]{} 0. \text{ The sequence } (x_n)_n \text{ is a Cauchy sequence.}$

الباب الرابع

توبولوجيا الأعداد الحقيقية

تمارين 4.1

1. أوجد نقاط التراكم، والنقاط المعزولة للمجموعات الآتية

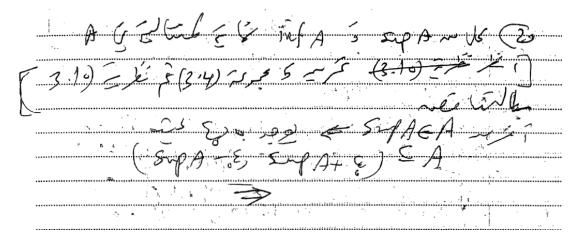
$$(0,1] \cup \{3,5\} \times (-)$$

$$\begin{array}{cccc}
O(4) & (0,1] & (3,5) \\
= & [0,1] & (3,5) \\
= & [0,1] & (3,5) \\
5 & 3 & (3,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& & [0,1] & (4,5) \\
& [0,1] & (4,5)$$

 $\sup A \in \widehat{A}$ غير خالية ومحدودة ، و $A \notin A$ فأثبت أن $A \subset \mathbb{R}$ بإذا كانت $A \subset \mathbb{R}$

Let $a = \sup A$, there exist a sequence $(x_n)_n \in A$ which converges to a. Since $a \notin A$, there exists a subsequence $(x_{n_k})_k$ with different terms. a is an accumulation point of the sequence $(x_{n_k})_k$.

و يمكن استخدام المبرهنة التالية:


مبرهنة 2.3

إذا كان $\beta = \sup A$ ، فإن A إذا كان وفقط إذا كان

 $\forall \varepsilon > 0 \quad \exists \ a \in A : \qquad \beta - \varepsilon < a$

$\sup A \notin A$ غير خالية ومفتوحة ومحدودة، فأثبت أن $A \subset \mathbb{R}$ غير خالية ومفتوحة ومحدودة،

Let A be a bounded open subset of \mathbb{R} . If $a = \sup A \in A$, there is r > 0 such that $(a - r, a + r) \subset A$, which contradicts the fact that $a = \sup A$ since the interval $[a, a + r) \subset A$.

الباب الخامس

نهايات الدوال

تمارين 5.1

باستخدام التعريف أثبت ما يلي:

$$\lim_{x \to 4} \sqrt{x} = 2 \qquad \star \text{ (I)}$$

$$\lim_{x \to 2} x^3 = 8 \qquad \star \quad (9)$$

حل آخر:

- Let $\varepsilon > 0$ and $|x-c| \le 1$. $|x^3-c^3| = |x-c| |x^2+xc+c^2| \le |x-c|(|x|+|c|)^2 \le |x-c|(2|c|+1)^2$. Then if $\alpha = \inf(1, \frac{\varepsilon}{(2|c|+1)^2})$, for all $x \in D, 0 < |x-c| < \alpha \Rightarrow |x^3-c^3| \le \varepsilon$.

(7) VE70, we look for 870 s.E.

021x-c1<8, xeD => |f(x)]-o1<E

7 |f(x)]<E => |f(x)] < VE => |f(x)| < VE

Take 8 = VE

If lim f(x)] + l +> lim f(x) = l

x > c

For example: f(x) = {1 ; x > 0}

lim f(x) = lim 1 = 1

x > 0

but lim f(x) D. N.E. | since lim f(x) = 1

x > 0

3 lim f(x) = -1, they are not equal.

تمارين 5.2

1. أثبت أن النهايات الآتية غير موجودة

$$\lim_{x \to 0^+} \frac{1}{\sqrt{x}} \qquad \star \quad (1)$$

(1) (1)
$$\chi_{n} = \frac{1}{n^{2}} \in (0, \infty) \rightarrow (0, \infty)$$

$$0 \neq \chi_{n} \rightarrow 0$$

$$f(\chi_{n}) = \frac{1}{\sqrt{2}} = n\pi$$

$$= n = 1$$

$$\Rightarrow \Rightarrow \Rightarrow \forall \chi$$

$$\Rightarrow \Rightarrow \Rightarrow \forall \chi$$

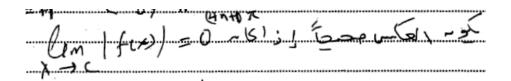
$$\lim_{x \to 0} \cos \frac{1}{2x} \qquad \star \quad (2)$$

(3)
$$f(x) = \cos(\frac{1}{2x}), f: \mathbb{R}^{-\frac{1}{2}} \to \mathbb{C}^{-1}, \mathbb{I}$$

$$g_n = \frac{1}{2n\pi} \in \mathbb{R}^{-\frac{1}{2}} \text{ find table in }$$

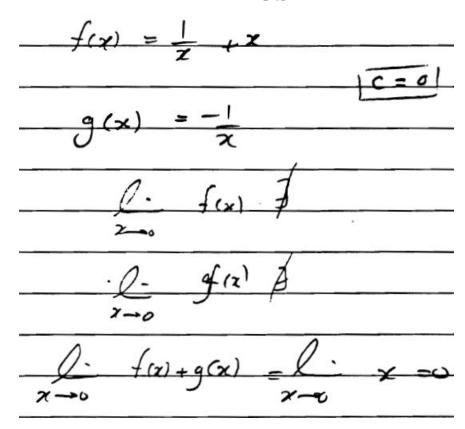
$$o \neq \chi_n \to o$$

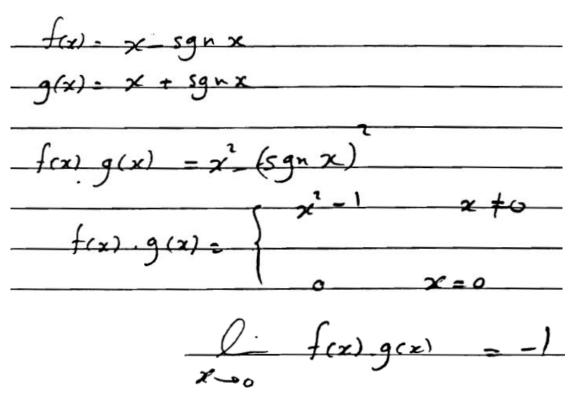
$$f(\chi_n) = \cos(\frac{1}{2 \cdot \frac{1}{2n\pi}}) = \cos(n\pi) = (-1)^n$$


$$f(\chi_n) = \cos(\frac{1}{2 \cdot \frac{1}{2n\pi}}) = \cos(n\pi) = (-1)^n$$

$$f(\chi_n) = \cos(\frac{1}{2 \cdot \frac{1}{2n\pi}}) = \cos(n\pi) = (-1)^n$$

$$f(\chi_n) = \cos(\frac{1}{2n\pi}) = \cos(\frac{1}{2n\pi})$$


9. \star إذا كانت L ا $\lim_{x \to c} |f(x)| = |L|$ أن أثبت أن أ $\lim_{x \to c} f(x) = L$ متى يكون العكس صحيحا.


Let $\varepsilon > 0$, there is $\alpha > 0$ such that for $|x - c| \le \alpha$, $|f(x) - \ell| \le \varepsilon$. Moreover $||f(x)| - |\ell|| \le |f(x) - \ell| \le \varepsilon$ for $|x - c| \le \alpha$. The converse is true if f has a constant sign.

تمارين 5.3

را) \star إذا كانت $f(x) = \lim_{x \to c} f(x)$ غير موجودة، فهل ممكن أن تكون النهاية $\lim_{x \to c} f(x) = \lim_{x \to c} f(x)$ موجودة؟ موجودة ماذا عن $\lim_{x \to c} f(x)g(x)$

 $\lim_{x \to c} g(x)$ غير موجودة فهل يمكن أن تكون $\lim_{x \to c} [f(x) + g(x)]$ موجودة $\lim_{x \to c} f(x)$ غير موجودة فهل أن تكون أن تكون أن تكون أب

أوجد قيم النهايات الآتية إن وجدت

$$\lim_{x \to 0} \frac{x^2}{|x|} \qquad \star \quad (1)$$

$$\lim_{x \to 0} \frac{\pi^2}{|x|} = \lim_{x \to 0} \frac{\pi^2}{\pi}; \pi \to 0$$

$$\lim_{x \to 0} \frac{\pi^2}{|x|} = \lim_{x \to 0} \frac{\pi^2}{\pi}; \pi \to 0$$

$$\lim_{x \to 0} \frac{\pi^2}{|x|} = \lim_{x \to 0} \frac{\pi^2}{\pi}; \pi \to 0$$

$$\lim_{x \to 0} \frac{\pi^2}{|x|} = \lim_{x \to 0} \frac{\pi^2}{\pi}; \pi \to 0$$

$$\lim_{x \to 0} \frac{\pi^2}{|x|} = \lim_{x \to 0} (-\pi) = 0$$

$$\lim_{x \to 0} \frac{\pi^2}{|x|} = 0$$

$$\lim_{x \to 0} \frac{x^2(3+\sin x)}{(x+\sin x)^2} \qquad \star \quad (\texttt{a})$$

(a)
$$\lim_{x \to 0} \frac{x^2(3 + \sin x)}{(x + \sin x)^2} = \lim_{x \to 0} \frac{x^2(3 + \sin x)}{x^2(1 + \sin x)^2}$$

= $\lim_{x \to 0} \frac{3 + \sin x}{(1 + \sin x)^2} = \lim_{x \to 0} \frac{3 + \cos x}{(1 + \sin x)^2}$
 $\lim_{x \to 0} \frac{3 + \sin x}{(1 + \sin x)^2} = \lim_{x \to 0} \frac{3 + \cos x}{(1 + \sin x)^2}$

 $\lim_{x \to c} f(x)g(x) = 0$ أنت و $\lim_{x \to c} f(x)g(x) = 0$ أنبت أن و $\lim_{x \to c} f(x)g(x) = 0$ أذا كانت $\lim_{x \to c} f(x)g(x) = 0$ أذا كانت و $\lim_{x \to c} f(x)g(x) = 0$ أذا كانت و $\lim_{x \to c} f(x)g(x) = 0$ أذا كانت و $\lim_{x \to c} f(x)g(x) = 0$

(i). Y E>0 38.	
≠ €D	
χ ‡ C	4
- χ + C - /x - c1 < δ, -> f(x) < ξ	
(ii) 7 8, K)o	
19(x) (K . Yx ∈ (C-8, C-82)	
$\frac{V_{i}(\varepsilon)}{C}$	
$\frac{V_{z(t)}}{c}$	
V=V, NV2 = (C-8, C+8) \ 103	
Semin 1 81, 827	: :
VxeV => Ifin, garl= Ifinl Igizil	
0< 1x-c1<8 < 1+(x) K < K = 1	

تمارين 5.4

1. أوجد قيم النهايات الآتية

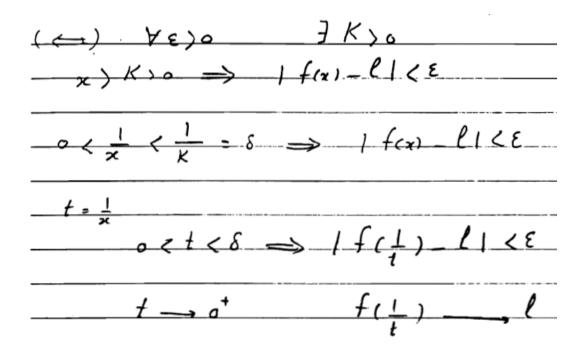
$$\lim_{x \to \infty} \frac{2x^3 + 2x + 1}{3x^3 + x^2} \qquad \star \text{ (1)}$$

$$\frac{(1)(8)}{2 + 2x^{3} + 2x + 1} = \lim_{x \to \infty} \frac{x^{3}(2 + \frac{2}{x^{2}} + \frac{1}{x^{3}})}{x^{3}(3 + \frac{1}{x})}$$

$$= \lim_{x \to \infty} \frac{2 + \frac{2}{x^{2}} + \frac{1}{x^{2}}}{3 + \frac{1}{x}} = \frac{2 + 0 + 0}{3 + 0} = \frac{2}{3}$$

$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}} \qquad \star \quad (\mathbf{A})$$

$$(9) \lim_{X \to -\infty} \frac{\chi}{\sqrt{n^2+1}} = \lim_{X \to -\infty} \frac{\chi}{\sqrt{x^2(1+\frac{1}{2})}}$$


$$= \lim_{N \to \infty} \frac{\chi}{\sqrt{x^2\sqrt{1+\frac{1}{2}}}} = \lim_{N \to -\infty} \frac{\chi}{\sqrt{x^2\sqrt{1+\frac{1}{2}}}} = \lim_{N \to -\infty} \frac{\chi}{-\sqrt{1+\frac{1}{2}}} = \lim_{N \to -\infty} \frac{\chi}{-$$

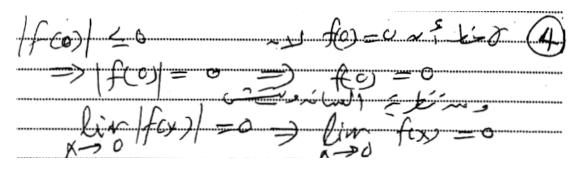
$$\lim_{x \to 3} \frac{1}{(x-3)^2} = \infty$$
 لتعریف \star .3

(3)
$$|3|$$
: $(x-3)^2 < \epsilon$: $(x-3)^2 < \epsilon$: $(x-3)^2 > \frac{1}{\epsilon} \Rightarrow (x-3) > \frac{1}{\epsilon} \Rightarrow x > \frac{1}{\epsilon} + 1$
 $|4| = \frac{1}{\epsilon} + 1 - \frac{1}{\epsilon} = 1$

 $\lim_{x \to \infty} f(x) = L$ اذا كانت $\lim_{x \to 0^+} f\left(rac{1}{x}
ight) = L$ أن أثبت أن $f:(0,\infty) \to \mathbb{R}$ إذا كانت \star .4

$\frac{2}{x \to 0^{+}} f\left(\frac{1}{x}\right) = l \iff \frac{1}{x \to \infty} f(x) = l$
$\chi \rightarrow \sigma^{+}$ $\chi \rightarrow \infty$
(=) V E > 0 (3 V (=)
$- cx < \delta \implies f(\frac{1}{2}) - \ell < \epsilon$
$\frac{1}{2}$ $\frac{1}{8}$ $\frac{1}$
0 (M E 0 (3 V :
$-t\rangle M = \frac{1}{8} \implies 1f(t) - C1 < E$
8

إلباب السادس


الاتصال

تمارين 6.1

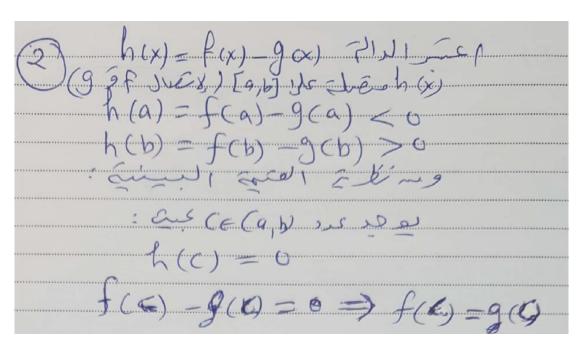
بانت
$$f:(-1,1) \to \mathbb{R}$$
 تحقق \star .4

$$|f(x)| \le |x| \quad \forall x \in (-1, 1)$$

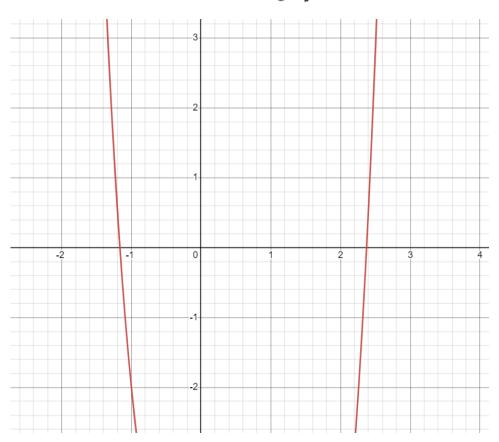
x=0 عند متصلة عند أن أ

ر. \star إذا كانت $\mathbb{R} \longrightarrow \mathbb{R}$ متصلة، وكان \star

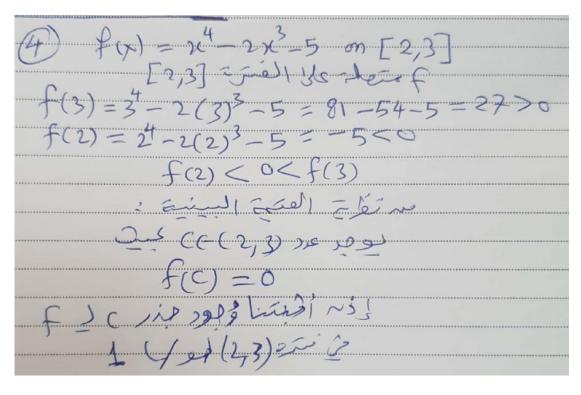
$$f(q) = 0 \qquad \forall q \in \mathbb{Q}$$


فأثبت أن

$$f(x) = 0 \qquad \forall x \in \mathbb{R}$$

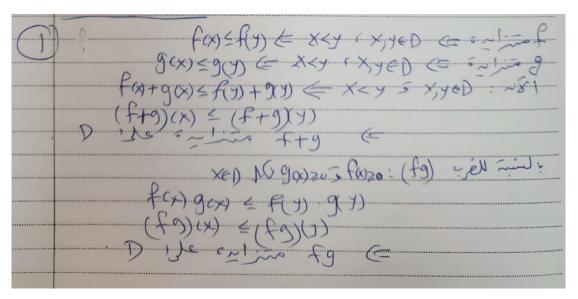

 \mathbb{Q} is dense in \mathbb{R} , then for all $x \in \mathbb{R}$ there exist a sequence $(x_n)_n$ in \mathbb{Q} convergent to x and $x_n \neq x$ for all $n \in \mathbb{N}$. Since $f(x_n) = 0$ for all $n \in \mathbb{N}$, then f(x) = 0.

تمارين 6.2


 $c \in (a,b)$ دوالا متصلة، وكان f(a) > g(b) و f(a) < g(a) وكان f(a) < g(a) دوالا متصلة، وكان f(a) < g(a) وكان f(a) < g(a) دوالا متصلة، وكان f(a) < g(a) وكان أنه يوجد f(a) > g(a)

 $x^4-2x^3-5=0$ عين فترة طولها 1 تحتوي على جذر للمعادلة $x^4-2x^3-5=0$ عين فترة طولها 1

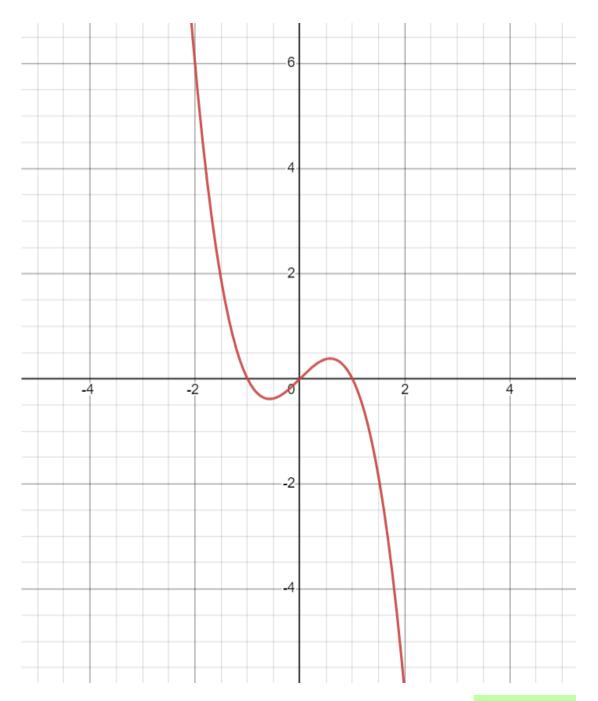
يوجد جذر ان حقيقيان للدالة أحدهما موجب و الأخر سالب لندرس احدهما .. مثلا الموجب:


.15 عند أن $f:[a,b] o \mathbb{R}$ فأثبت أن $f:[a,b] o \mathbb{R}$ عند نقطة $c \in (a,b)$ عند نقطة ولما قيمة قصوى عند نقطة أثبت أن أ

دفاعري أز كوله يما تيمة عظم عنده و و متعلة في جوار ع L f(w) = f(c) (x) (|x-n|<c =) f(w)-12 | f(n) ≤ fcc) = nax | (a,b) & x) \(\(\) Mean Value Ham

Mean Value Ham و دطیت فظریج العیمت للتومعلة f(1)-€ < L < f(1) (c-η c) se alp20 f (con) + x, sus 2 x 63 5 CC,C+1) SC MVT 25 in Gybis (c, c+y) + x2 se - 9 f(m2)= L C=> 21+x2 ⇒ f(x1) = f(x2) 286 f Les 1 des

تمارين 6.3


 $f,g:D\to\mathbb{R}$ متزایدة. ماذا عن $f,g:D\to\mathbb{R}$ متزایدة. ماذا عن f? الحل:

إذا كانـــت g متزايدتين على D فأثبت أن g متزايدة على g . إذا كانـــت بالإضــافة إلى ذلك $g(x) \geq 0$ ، $f(x) \geq 0$ فأثبت أن $f \cdot g$ متزايدة على g . g

g و g من أبت أن كلاً من g(x)=1-x ، f(x)=x ، D=[0,1] البت أن كلاً من و و لله مطردة ولكن $f\cdot g$ ليست مطردة.

31011
X, y E [0,1] and X < y => f(x) < f(y)
f E
X) 1 [[0] and XZy = -x>-J
$\Rightarrow 1 - x > 1 - 1$
=) g(x) 7 g(y)
agolino g E
(3)(x) = 2(1-x) = 2(1-x)
$(fg)(x) = \chi(1-x) \qquad (-x) \qquad (-$

تمارين 6.4

1. أثبت ان الدوال الآتية متصلة بانتظام على مجالها

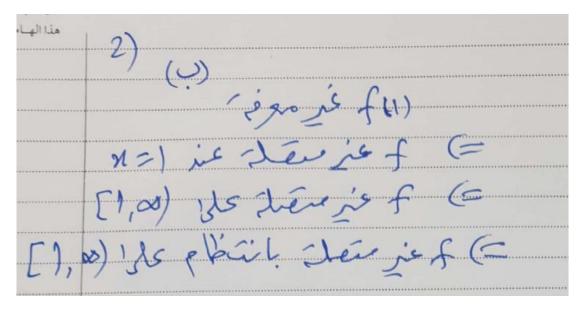
$$f(x) = \sqrt[3]{x} \star (1)$$
علی اوری،

• $g(x) = \sqrt[3]{x}$, $D_g = \mathbb{R}$. g is uniformly continuous since g is uniformly continuous on [-1,1] and for $x,y \ge 1$, $|g(x)-g(y)| \le |x-y|$. $(x^3-y^3=(x-y)(x^2+y^2+xy))$. The same result for $x,y \le -1$.

$$\cdot(0,\infty)$$
 ي و $f(x) = \frac{x^2}{x+1} \star$ (ج)

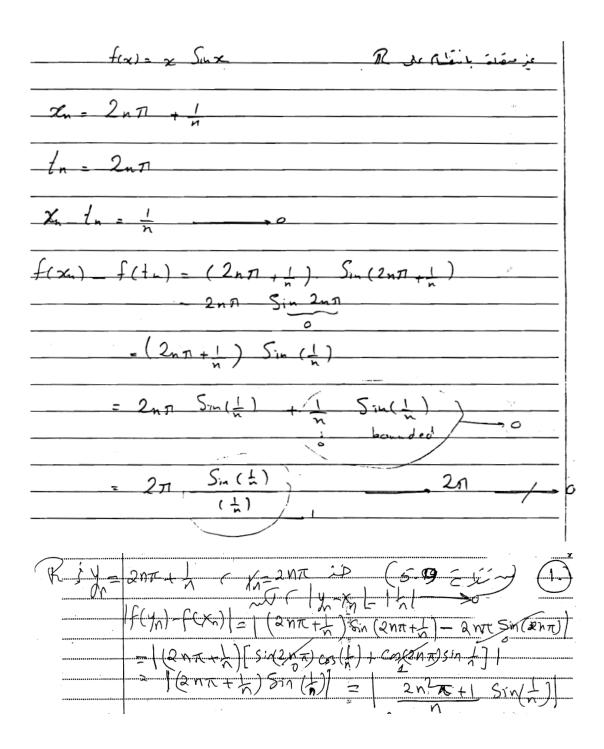
1) (Z)
$$\{x, t \in (0, \infty) \mid x^2 = \frac{t^2}{2t} \mid x^2 + t^2 = \frac{t^2}{2t} \mid x$$

$$(0,\infty)$$
 علی $f(x) = \frac{\sin x}{x}$ (د)

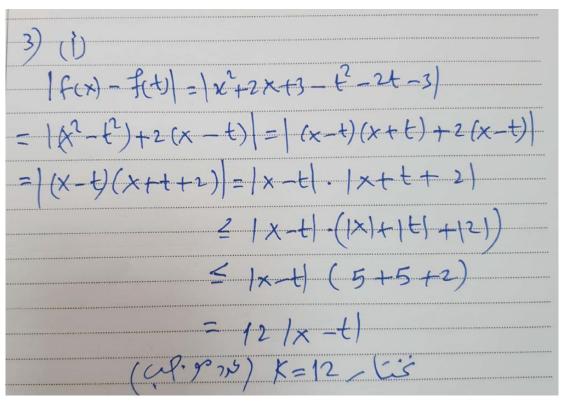

(3)
$$(5, \infty)$$
 Us $(5, \infty)$ $(5,$

مبرهنة 6.20

 $\overline{D}=D\cup\widehat{D}$ اذا كانت $f:D\longrightarrow\mathbb{R}$ متصلة بانتظام على D . فإنه يمكن تمديد الدالة f لتصبح متصلة بانتظام على

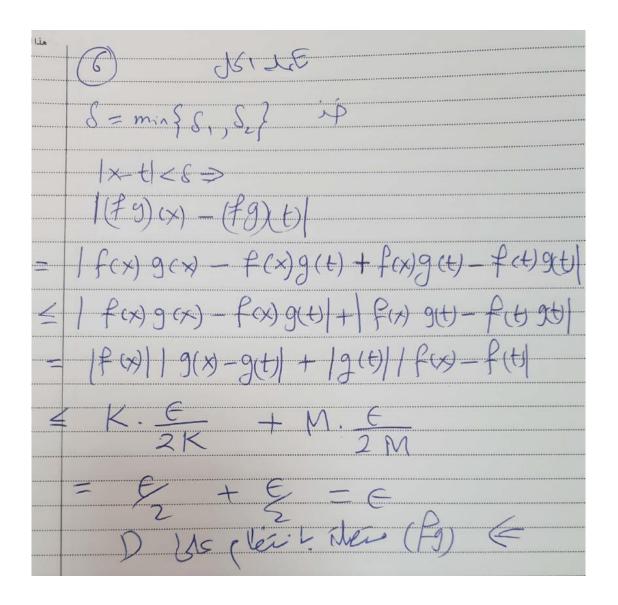

2. أثبت أن الدوال الآتية غير متصلة بانتظام على مجالها

$$[1,\infty)$$
 يلي $f(x) = \frac{x^3-1}{x-1} \star (\psi)$



2. أي دالة متصلة بانتظام، فهي متصلة.

ای $f(x) = x \sin x \star ($



. و أثبت ان الدوال الآتية تحقق شرط ليبشتز على مجالها $f(x) = x^2 + 2x + 3 \star$ (۱)

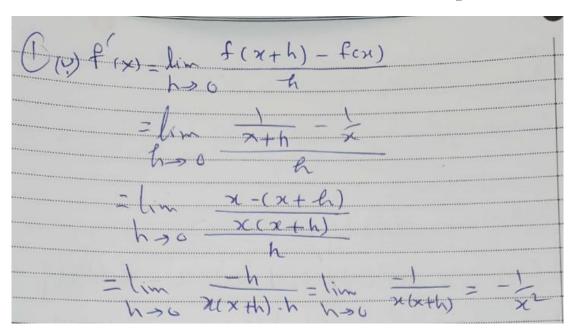
.D متصلة بانتظام ومحدودة، فأثبت أن $f,g:D o\mathbb{R}$ متصلة بانتظام على f.

(i) $\exists K, M > 0$ $|f(x)| \leq K \quad \forall x \in D$ $|g(x)| \leq M \quad \forall x \in D$ |g(

fg أوجد مثالاً يوضح أن $f,g:D \to \mathbb{R}$ متصلة بانتظام، فأثبت أن f+g متصلة بانتظام على f. ثم أوجد مثالاً يوضح أن f. ليست بالضرورة متصلة بانتظام على f.

1x-t/e8, => /fcx) - f(t)/ < 6/2
1x-t1 cs. => 1 g(x) - g(t) 1 < 2/2
S = min { S, , Sz }
1x-t1 < 8 => 1 (f(x) +g(x)) - (f(t)+g(t))
= 1(f(x) - f(1)) + (g(x) - g(t))
<

مثال الضرب:


The function f defined by f(x)=x is uniformly continuous on $\mathbb R$ but f^2 is not uniformly continuous on $\mathbb R$.

	الباب السابع ــــــــــــــــــــــــــــــــــــ
الاشتقاق	

تمارين 7.1

1. باستخدام التعريف أوجد مشتقات الدوال الآتية

$$f(x) = \frac{1}{x}, \ x \neq 0 \star \ (\mathbf{\psi})$$

أوجد مجموعة النقاط التي تكون عندها الدالة غير قابلة للاشتقاق.

$$f(x) = |x^2 - 1| \star (1)$$

• $f(x) = |x^2 - 1|$, f'(x) = -2x if |x| < 1, f'(x) = 2x if |x| > 1 and f'(1) and f'(-1) does not exist.

$$f(x) = x|x| \star (\pi)$$

$$f(x) = x|x|, f'(x) = 2x \text{ if } x > 0, f'(x) = -2x \text{ if } x < 0 \text{ and } f'(0) = 0.$$

4. * أثبت أن الدالة

$$f\left(x\right) = \left\{ \begin{array}{ll} x^2 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^c \end{array} \right.$$

f'(0) اوجد x=0 عند قابلة للاشتقاق عند

 $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x}$. But $|f(x)| \le x^2$ for all $x \in \mathbb{R}$, then f'(0) = 0.

بإذا كانت f تحقق

$$|f(x)| \le |x|^r$$

x=0 في جوار 0 وكان t>1 فأثبت أن f قابلة للاشتقاق عند

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x}$$
. But $|f(x)| \le |x|^{\alpha}$ and $\alpha > 1$, then $f'(0) = 0$.

9. \star إذا كانت f قابلة للاشتقاق، فأثبت أن f فردية إذا كانت f زوجية، و f زوجية إذا كانت f فردية.

$$f(x) = f(x) = (f(-x))^2 = f(x)$$

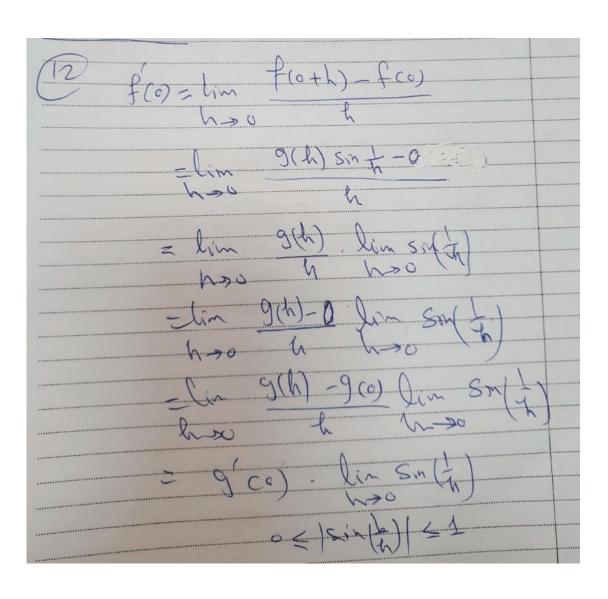
$$f'(x) = -f(-x)$$

$$f(-x) = -f(x)$$

$$f(-x) = -f(x)$$

$$f(-x) = -g(x)$$

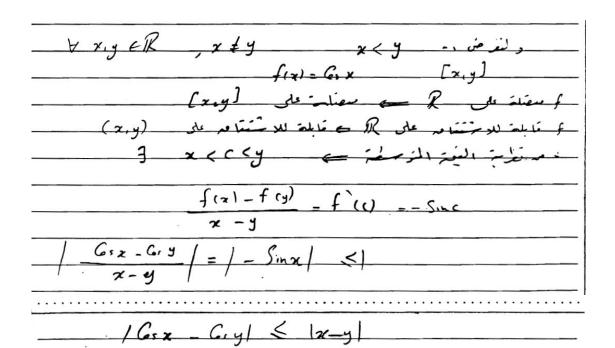
$$g(-x) = -g(x)$$


$$g'(-x) = -g(x)$$

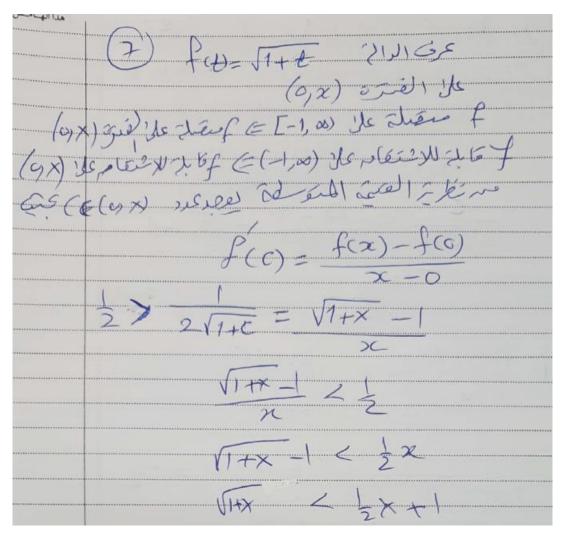
$$g'(-x) = -g(x)$$

حل آخر:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$
 If f is even, $f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = -\lim_{h \to 0} \frac{f(x-h) - f(x)}{-h} = -f'(x).$ Then f' is odd.
 If f is odd, $f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{h \to 0} \frac{-f(x-h) + f(x)}{h} = f'(x).$ Then f' is even.


ون
$$f'(0)$$
 عیث $g(0)=g'(0)=0$ نأوجد $g(x)\sin\frac{1}{x}$ عیث $f(x)=$ $g(x)\sin\frac{1}{x}$ $x\neq 0$ $f(x)=$

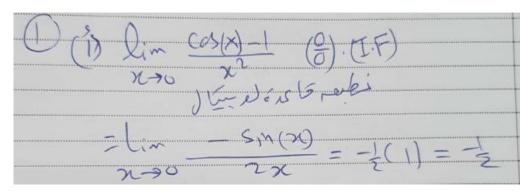
تمارين 7.2


نه لکل $x,y\in\mathbb{R}$ ، فإن \star .5

 $|\cos x - \cos y| \le |x - y|$

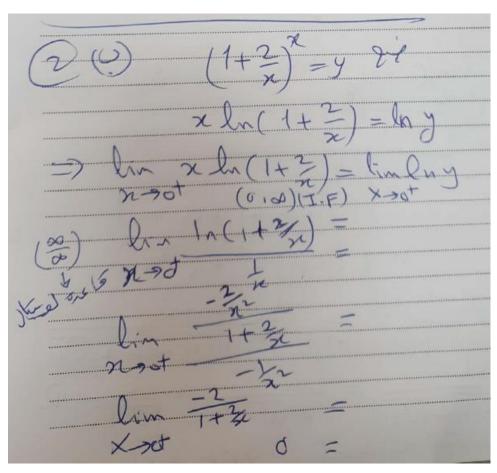
 $\sqrt{1+x} < 1 + \frac{x}{2} \quad \forall \ x > 0$

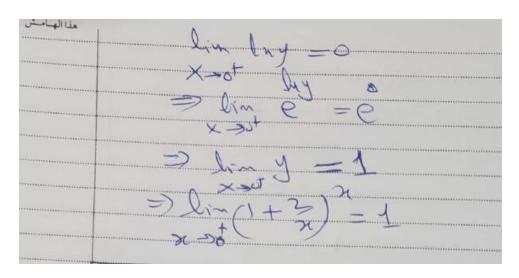
7. ★ أثبت أن



عيث $c\in(0,1)$ عيد، أثبت أن الدالة $f(x)=\sqrt{x^2+1}$ قابلة للاشتقاق على \mathbb{R} . ثم يرهن وجود $\sqrt{2}-1=\frac{c}{\sqrt{c^2+1}}$

f(c) = lim(f(c+h)-f(c) : CER ~ W $\frac{1}{2} = \frac{1}{2} = \frac{1}$ h (((c+h)2+1+ /c2+1) (c+h)2H-(c2+V) = lm 2ch+12 N(V(c+h)2+1+VC2+1) h>0 h(V(c+h)2+1+VC2+1) (0)1) Us les f (R 16 Les fox) - Trisi (0,1) We will 3 f 2 1/2 We will with f : 23 (E(0,1) DE DO The SHI GOD, 2 1/2 ~ f(c) = f(c) - f(c)(= \f2-1 = \f2-


أوجد النهايات التالية


$$\lim_{x \to 0} \frac{\cos x - 1}{x^2} \star (1)$$

2. أوجد النهايات التالية

$$\lim_{x \to 0^+} \left(1 + \frac{2}{x} \right)^x \star (\mathbf{\psi})$$

و g'(0)=g'(0)=0 و g'(0)=g'(0)=0 متصلة ومعرفة بالعلاقة بالعلاقة بالعلاقة g(0)=g'(0)=0 و $g\in C^2(\mathbb{R})$

$$f(x) = \frac{g(x)}{x}, \qquad x \neq 0$$

x=0 عند وابلة للاشتقاق عند f عند أوجد

.8 خير موجودة، ولكن $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ غير موجودة، ولكن $\lim_{x \to 0} \frac{f(x)}{g(x)}$ غير موجودة. $f(x) = x^2 \sin(\frac{1}{x}), \ g(x) = \sin x$

 $\int_{n}^{\infty} \frac{f(w)}{g(w)} = \frac{1}{2}$ $\int_{n}^{\infty} \frac{f(w)}{g(w)} = \frac{1}{2}$ $\int_{n}^{\infty} \frac{f(w)}{g(w)} = \frac{1}{2}$ $\int_{n}^{\infty} \frac{f(w)}{g(w)} = \frac{1}{2}$ = 2 x 8in(1/n) = 2 x 8in(1/n) = 2 x 8int = 0 = 2 + 700 8int = 0 $\frac{f'(x)}{g'(x)} = \frac{1}{2} \frac{1}{2} \frac{x^2 \sin(x)}{x^2 \sin(x)}$ $= \frac{1}{2} \frac{1}{2} \frac{x^2 \sin(x)}{x^2 \sin(x)}$

تمارين 7.4

ئبت أنه لكل x>0، فإن \star .5

$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{x+1} \le 1 + \frac{x}{2}$$

	1 20	•		
	لا يحب مي	المنا معاجدات		
13	C	$\sqrt{x+1} \le 1 + \frac{x}{2} $		
		1+2-23<12+1 (2)		
		(2) 3 /21/ (12)		
		الم المحالية		
	(0	IN Us For The harron of		
		(0,b) Its her f(x) = 1 (1+x) =		
		(0,b) is the fa)= - (1+x)=		
		(0, b) Us = sefer of (x)= 3 (1+x) =		
		: Cisx 50 mic 21x iles vis		
ė.	P.			
	TO	(x-y) = f(y) +		
>	V1+X=	1+12-12-13-1-23		
7.		1+2x-2x2+3-1-23-31		
		+x > 1 + 2x - 2 cess		
	-> V1-	7/12/-52		

إثبات المتراجحة (1):

$$(0, x) \text{ giv's like the form of } (0, x) \text{ giv's like the form of } (0, x) \text{ giv's like the form of } (0, x) \text{ giv's like the form of } (0, x) \text{ give like the form of }$$

6. حدد فیما إذا كانت f(0) قیمة عظمی محلیة، صغری محلیة، لیست قیمة قصوی

$$f(x) = \sin x - x + \frac{x^3}{6} \quad \star \quad (\because)$$

$$f'(c)=f''(c)\dots, f^{(m-1)}(c)=0$$
 $f^{(m)}(c)\neq 0$ $f^{(m)}(c)\neq 0$

	مذا الهامش
(b) P(x) = cos(x)-1+2x	2
F(0) = CO(0) -1 +0:	= 0
5 (x) = - Sinx + X	
f(c) = -5, x(0) +0 =	0
f (x) = - cos(x) + 1	
f'(0) = -65(0) +1=	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW
E(0) = +5/x(4)	
$f(0) = +\sin(0) = 0$	
$\frac{(5)}{2}(x) = CS(x)$	
(45)	0 .
F(0) E 5	25 34 71-9
J3 's per action ()	
Les Signals	