

[Solution Key]

KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS

Semester 452 / MATH-244 (Linear Algebra) / Mid-term Exam 1

Max. Marks: 25

Max. Time: $1\frac{1}{2}$ hr**Question 1:** [Marks: 3 + 4 + 3](a). Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{bmatrix}$. Compute A^2 and then use A^2 to find A^{-1} .**Solution:** $A^2 = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = 9I$ and so $A^{-1} = \frac{1}{9}A = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{bmatrix}$. (Marks 1 + 2)(b). Let $A = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 1 & 1 & 0 & -2 \\ -1 & 0 & 1 & 1 \\ -2 & 0 & 0 & 1 \end{bmatrix}$. Find A^{-1} and then use A^{-1} to find $\text{adj}(A)$.**Solution:** $[A|I] = \left[\begin{array}{cccc|cccc} 1 & 1 & -1 & -2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & -2 & 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{array} \right] \sim \dots \sim \left[\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 3 & -2 & 3 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & -2 & 2 & -1 \end{array} \right]$ and so $A^{-1} = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 3 & -2 & 3 & -1 \\ -1 & 1 & 0 & 0 \\ 2 & -2 & 2 & -1 \end{bmatrix}$. ((Marks 1.5))Next, $\det(A) = 1$. Hence, $\text{adj}(A) = \det(A)A^{-1} = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 3 & -2 & 3 & -1 \\ -1 & 1 & 0 & 0 \\ 2 & -2 & 2 & -1 \end{bmatrix}$. (Marks 1 + 1.5)(c). Let A be a 3×3 matrix with $\det(A) = 2$. Evaluate $\det(\text{adj}(A))$.**Solution:** $\det(\text{adj}(A)) = \det(\det(A)A^{-1}) = (\det(A))^3(\det(A))^{-1} = 4$. (Marks 1 + 1.5 + 0.5)**Question 2:** [Marks: 4 + 4](a). Let $A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$. Find all matrices $M = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ such that**Solution:** $AM = MA$ implies $\begin{cases} y - z = 0 \\ x - 3z - t = 0 \\ x - 3y - t = 0 \end{cases}$ This system of linear equations has solution set (Mark 1.5) $\{(3z + t, z, z, t) \mid t, z \in \mathbb{R}\}$. Hence, $M = \begin{bmatrix} 3z + t & z \\ z & t \end{bmatrix}$ for all $t, z \in \mathbb{R}$. (Marks 2 + 0.5)(b). Find the values of a , b and c so that $(1, -2, 3)$ is the solution of following system of linear equations:

$$\begin{aligned} ax + 2by + cz &= 6 \\ ax + 6by + cz &= -2 \\ 3ax + 4by + cz &= -8. \end{aligned}$$

Solution: Since $(1, -2, 3)$ is the solution of the above given system, we get the following system of linear equations:

$$\begin{aligned} a - 4b + 3c &= 6 \\ a - 12b + 3c &= -2 \\ 3a - 8b + 3c &= -8. \end{aligned}$$

Which has the unique solution $a = -5$, $b = 1$ and $c = 5$. (Marks 2)(Marks 2)**Question 3:** [Marks: 3 + 4](a). Use the Gauss-Jordan elimination method to solve the linear system $AX = B$, where:

$$A = \begin{bmatrix} 2 & -1 & -4 & 3 \\ 3 & -2 & -5 & 4 \\ 3 & -3 & -2 & 0 \end{bmatrix}, X = \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Solution: $[A|I] = \left[\begin{array}{cccc|c} 2 & -1 & -4 & 3 & 1 \\ 3 & -2 & -5 & 4 & 1 \\ 3 & -3 & -2 & 0 & 1 \end{array} \right] \sim \dots \sim \left[\begin{array}{cccc|c} 1 & 0 & 0 & -7 & 14 \\ 0 & 1 & 0 & -5 & 3 \\ 0 & 0 & 1 & -3 & 1 \end{array} \right]$ (RREF). (Marks 1.5)Hence, solution set of the given linear system is $\{(4+7t, 3+5t, 1+3t, t) \mid t \in \mathbb{R}\}$. (Marks 1.5)

(b). Find all the non-trivial solutions of the following homogeneous system:

$$\begin{aligned} 2x + 2y + 4z &= 0 \\ w - y - 3z &= 0 \\ 2w + 3x + y + z &= 0 \\ -2w + x + 3y - 2z &= 0. \end{aligned}$$

Solution: $[A|I] = \left[\begin{array}{cccc|c} 0 & 2 & 2 & 4 & 0 \\ 1 & 0 & -1 & -3 & 0 \\ 2 & 3 & 1 & 1 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{array} \right] \sim \dots \sim \left[\begin{array}{cccc|c} 1 & 0 & -1 & -3 & 0 \\ 0 & 1 & 1 & -8 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$. (Marks 1.5)Hence, the set of non-trivial solutions of the given linear system is $\{(t, -t, t, 0) \mid 0 \neq t \in \mathbb{R}\}$. (Marks 2 + 0.5)(Marks 2 + 0.5)***!