

[Solution Key]

KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS

Semester 461 / MATH-244 (Linear Algebra) / Mid-term Exam 1

Max. Marks: 25

Max. Time: $1\frac{1}{2}$ hrs.

Question 1: [Marks: 5]

Determine whether the following statements are true or false:

(i) If A is a square matrix and $A^2 = 0$, then $(I + A)^{-1} = I - A$. [True] [Mark 1]

(ii) If A and B are row equivalent square matrices, then $|A| = |B|$. [False] [Mark 1]

(iii) If $A \text{adj}(A) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $|A| = 9$. [False] [Mark 1]

(iv) There is a homogeneous linear equation for which $(1, 0, 2)$ is a solution but not $(2, 0, -4)$. [True] [Mark 1]

(v) If $RREF(A)$ has a zero row, then $AX = B$ must have infinitely many solutions. [False] [Mark 1]

Question 2: [Marks: 4 + 3 + 3]

(a) Find inverse of the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and find the matrix B satisfying the equation $BA = A^2 + 5A$.

Solution: $[A|I] = \begin{bmatrix} 2 & 0 & 0 & : & 1 & 0 & 0 \\ 0 & 1 & 0 & : & 0 & 1 & 0 \\ 0 & 0 & 3 & : & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & : & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & : & 0 & 1 & 0 \\ 0 & 0 & 1 & : & 0 & 0 & \frac{1}{3} \end{bmatrix}$, and so $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$. [Marks 2]

Next, $B = (BA)A^{-1} = (A^2 + 5A)A^{-1} = A + 5I = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. [Marks 2]

(b) Let A be an invertible matrix. Show that $(\text{adj}(A))^{-1} = \text{adj}(A^{-1})$.

Solution: $\text{adj}(A) = |A| A^{-1} \Rightarrow (\text{adj}(A^{-1}))^{-1} = (|A|^{-1} A)^{-1} = |A| A^{-1} = \text{adj}(A) \Rightarrow (\text{adj}(A))^{-1} = \text{adj}(A^{-1})$. [Marks 1+1+1]

(c) Show that the matrix $\begin{bmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{bmatrix}$ is invertible for all $x \in \mathbb{R}$, where \mathbb{R} denotes the set of real numbers.

Solution: Since $\begin{vmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{vmatrix} = 1+x(x+1) \neq 0$ for all $x \in \mathbb{R}$, $\begin{bmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{bmatrix}$ is invertible for all $x \in \mathbb{R}$. [Marks 2+1]

Question 3: [Marks: 2 + 4 + 4]

(a) If E is an elementary matrix, then show that the linear system $EX = O$ has only the trivial solution.

Solution: Since E being an elementary matrix is invertible, $X = E^{-1}(EX) = E^{-1}O = O$; only trivial solution. [Marks 1+1]

(b) Solve the following system of linear equations:

$$\begin{aligned} x + y &= 1 \\ x + 2y + z &= -1 \\ x + 3y - z &= 2. \end{aligned}$$

Solution: Observe that $|A| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & -1 \end{vmatrix} = -3 \neq 0$, $|A_x| = \begin{vmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 2 & 3 & -1 \end{vmatrix} = -4$, $|A_y| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = 1$,

and $|A_z| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & 3 & 2 \end{vmatrix} = 5$. So, by Cramer's Rule, $x = \frac{|A_x|}{|A|} = \frac{4}{3}$, $y = \frac{|A_y|}{|A|} = \frac{-1}{3}$, $z = \frac{|A_z|}{|A|} = \frac{-5}{3}$. [Marks 1+1.5+1.5]

(c) What conditions must a, b, c , and d satisfy for the following system to be consistent?

$$\begin{aligned} x_1 + x_2 - x_4 &= a \\ x_2 - x_3 - 2x_4 &= b \\ 2x_1 + 2x_3 + 2x_4 &= c \\ 2x_1 + x_2 + x_3 &= d. \end{aligned}$$

Solution: Since $[A|I] = \begin{bmatrix} 1 & 1 & 0 & -1 & : & a \\ 0 & 1 & -1 & -2 & : & b \\ 2 & 0 & 2 & 2 & : & c \\ 2 & 1 & 1 & 0 & : & d \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & -1 & : & a \\ 0 & 1 & -1 & -2 & : & b \\ 0 & 0 & 0 & 0 & : & c - 2a + 2b \\ 0 & 0 & 0 & 0 & : & d - 2a + b \end{bmatrix}$, the given system would be

consistent for real numbers a, b, c, d satisfying the conditions $c = 2(a - b)$; $d = c + b$. [Marks 2+2]

***!