c) $\sqrt{(A+I)^{-1}}$ d) A + I [Mark 1]

d) 1/16 [Mark 1]

[Solution key]

King Saud University College of Sciences Department of Mathematics Semester 462 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40 Time: 3 hours

Solution	of (Quest i	ion 1	: (Correct c	hoices
----------	------	----------------	-------	-----	-----------	--------

a) 0

(i) If square of a matrix A is zero matrix, then I - A is equal to:

b) (A-I) ⁻¹

(ii) If A is a square matrix of order 3 with det(A) = 2, then $det(det(\frac{1}{det(A)}A^3)A^{-1})$ is equal to: a) 1/4 b) \checkmark 1/2 c) 1/3 d) 1/16

(iii) If the general solution of AX = 0 is $(-2r, 4r, r), r \in \mathbb{R}$, and (1,0,-2) is a solution of AX = B, then the

	genera	l solution	on of AX :	= B is:						
		a) 🗸 ((1 – 2r, 4r	(r, r - 2) b)	(-2r, 0	,-2r) c	(-2r, 4r, r)	d) (-2r	- 1, 4r, r - 2)	[Mark 1]
(iv)	A subs	et S of	\mathbb{R}^3 is a ba	sis of the v	ector sp	ace \mathbb{R}^3 if	S is equal to:			
									,2,1)} d) {(1,1,0)	[Mark 1]
(v)	If $B = transition$	$\{u_1 = \{u_1 = $	$(2,1)$, u_2 rix $\mathbf{P}_{\mathbf{C} \to \mathbf{R}}$ f	= (4,3) at from C to B	$C = \{ c \mid c \in \mathcal{C} \}$	$v_1 = (0.1)$	$v_2 = (6.0)$	} are order	ed bases of \mathbb{R}^2	, then the
							$\begin{bmatrix} -2/_3 & 3 \\ 1/_3 & -1 \end{bmatrix}$	d) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	4 3	[Mark 1]
(vi)	If B is	a squar	e matrix o	f order 3 w	ith det(B) = 2,	then nullity((B) is equal	to:	
		a) 2		b) 1	C	:) 3	d) 🗸 0			[Mark 1]
(vii)	If \langle , \rangle $\langle u + 2 \rangle$	is an in 2v, 5u -	ner produc - v) is equ	et on \mathbb{R}^n and to:	d u,v ∈	\mathbb{R}^n such the	$hat u ^2 = 5,$	$ v ^2=1,$	$\langle u,v\rangle = -2$, th	en
		a) $\sqrt{3}$	-	b) 🗸 5	(c) 9	d) 41			[Mark 1]
(viii)	If <i>S</i> =	$\{A, I_2\}$	$\subseteq M_{2\times 2}(I$	R), where A	4 is a no	n-symmet	ric matrix, the	en S must b	e:	
	a)	linearly	depender	nt b) a span	ning set	for $M_{2\times 2}$ ((R) c) √linear	rly indepen	dent d) orthogo	nal [Mark 1]
	b)	Let T by $u \in \mathbb{R}^2$	oe the trai	nsformation $\ u\ $ is the	n from Euclidea	the Euclic in norm of	lean space R ² f u. Then, for	v to \mathbb{R} given v , $w \in \mathbb{R}^2$	to by $T(u) = u $ and $k \in \mathbb{R}$, T	ı∥ for all Γsatisfies:
				•					$> 0 d) T(k\mathbf{u}) =$	= kT(u) [Mark 1]
(x)	Zero is	s an eig	envalue of	the matrix	$\begin{bmatrix} 4 & 4 \\ 4 & 4 \\ 4 & 4 \end{bmatrix}$	4 with g	geometric mul	tiplicity eq	ual to:	
		a) 1		b) √	2 4	4 1	e) 3	d)	4	[Mark 1]

Question 2 [Marks 2 + 2 + 3]:

Question 2 [Marks
$$2 + 2 + 3$$
]:

(a) Find the square matrix A of order 3 such that $A^{-1}(A - I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and evaluate $det(A)$.

Solution: $I - A^{-1} = A^{-1}(A - I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix} \Rightarrow det(A^{-1}) = -1, \quad [Mark 1]$

(b) Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -2 \\ -2 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 1 \\ -1 & 1 & -2 \end{bmatrix}$. Find a matrix X that satisfies $XA = B$.

Solution: From Part (a), $A^{-1} = \begin{bmatrix} 0 & -1 & -1 \\ -2 & 0 & -1 \\ -1 & 1 & -2 \end{bmatrix}$; hence, $X = BA^{-1} = \begin{bmatrix} -3 & 1 & 0 \\ 0 & 3 & 2 \\ 4 & 1 & 2 \end{bmatrix}$. [Marks $0.5 + 1 + 0.5$]

(c) Solve the following system of linear equations:

$$x + y + z = 1$$

$$2x + 2z = 3$$

$$3x + 5y + 4z = 2.$$
Solution: The matrix of coefficient $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 5 & 4 \end{bmatrix}$ has the inverse $A^{-1} = \frac{1}{-2} \begin{bmatrix} -10 & 1 & 2 \\ -2 & 1 & 0 \\ 10 & -2 & -2 \end{bmatrix}$. [Marks 1.5]

[Marks 1.5]

The students may use any one of the methods included in the course MATH-244.

Question 3 [Marks 3 + 3 + 2]:

Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Then:

(a) Find a basis and the dimension for each of the vector spaces row(A), col(A), and N(A).

Solution: $RREF(A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Hence, $\{(1,0,1), (0,1,1)\}, \{(1,1,2), (0,2,0)\}, \{(1,1,-1)\}$ are bases of [Marks 2] $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ [row(A), col(A), N(A), respectively, and so, <math>dim(row(A)) = 2 = dim(col(A)), dim(N(A)) = 1. [Mark 1]

(b) Decide with justification whether the following statements are true or false:

(i)
$$row(A) = row(B)$$
 (ii) $col(A) = col(B)$ (iii) $N(A) = N(B)$.
Solution: $RREF(A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = RREF(B) \Rightarrow row(A) = row(B) \text{ and } N(A) = N(B)$. [Marks 1 + 1]
But, $col(A) \neq col(B)$ since $(1,1,2) \notin span(\{(1,0,0), (0,2,0), (1,2,0)\})$. [Mark 1]

(c) Find all square matrices Z of order 3 such that AZ = 0.

Solution: From Part (a),
$$\{(1,1,-1)\}$$
 is a basis of the null space $N(A) = \{X \in \mathbb{R}^3 \mid AX = 0\}$. Hence, $\mathbf{Z} = \begin{bmatrix} a & b & c \\ a & b & c \\ -a & -b & -c \end{bmatrix}$ satisfies $AZ = aA \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + bA \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + cA \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = aO + bO + cO = O$, for all $a,b,c \in \mathbb{R}$.

Question 4 [Marks 3 + (1 + 3)]:

(a) Construct an orthonormal basis
$$C$$
 of the Euclidean space \mathbb{R}^3 by applying the Gram-Schmidt algorithm on the given basis $B = \{v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1)\}$, and then find the coordinate vector of $v = (1,2,0) \in \mathbb{R}^3$ relative to the orthonormal basis C .

Solution: $u_1 = v_1 = (1,1,0); u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{||u_1||^2} u_1 = (\frac{1}{2}, -\frac{1}{2}, 1); u_3 = v_3 - \frac{\langle v_3, u_1 \rangle}{||u_1||^2} u_1 - \frac{\langle v_3, u_2 \rangle}{||u_2||^2} u_2 = (-\frac{2}{3}, \frac{2}{3}, \frac{2}{3}).$

Hence, $C = \{w_1 = \frac{1}{\sqrt{2}}(1,1,0), w_2 = \frac{1}{\sqrt{6}}(1,-1,2), w_3 = \frac{1}{\sqrt{3}}(-1,1,1)\}$ is the required orthonormal basis of \mathbb{R}^3 .

Next,
$$\langle v, w_1 \rangle = \frac{3}{\sqrt{2}}, \langle v, w_2 \rangle = \frac{-1}{\sqrt{6}}, \text{ and } \langle v, w_3 \rangle = \frac{1}{\sqrt{3}}. \text{ Hence, } [v]_C = \begin{bmatrix} \frac{3}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}.$$
 [Marks 1.5 + 0.5 + 1]

- (b) Let \mathscr{P}_2 denote the vector space of real polynomials with degree ≤ 2 . Consider the linear transformation $T: \mathbb{R}^3 \to \mathscr{P}_2$ defined by: $T(1,0,0) = x^2 + 1$, $T(0,1,0) = 3x^2 + 2$, $T(0,0,1) = -x^2$. Then:
 - (i) Compute T(a, b, c), for all $(a, b, c) \in \mathbb{R}^3$.
 - (ii) Find a basis for each of the vector spaces Im(T) and ker(T).

Solution: (i)
$$T(a,b,c) = aT(1,0,0) + bT(0,1,0) + cT(0,0,1) = (a+3b-c) x^2 + a + 2b.$$
 [Mark I] (ii) From Part (i), $Im(T) = \{(a+3b-c) x^2 + (a+2b)1 | (a,b,c) \in \mathbb{R}^3\} = span(\{x^2,1\}),$ [Mark I] and $ker(T) = \{(a,b,c) \in \mathbb{R}^3 | (a+3b-c) x^2 + (a+2b)1 = 0\}$ $= \{(a,b,c) \in \mathbb{R}^3 | a+3b-c=0, a+2b=0\}$ $= \{(a,b,c) \in \mathbb{R}^3 | a=-2b,b=c\}$ $= span(\{(-2,1,1)\}).$ [Mark I] Hence, $\{1, x^2\}$ and $\{(-2,1,1)\}$ are bases of $Im(T)$ and $ker(T)$, respectively. [Mark I]

Question 5 [Marks
$$3 + 2 + 3$$
]: Let $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 1 & -1 \\ 2 & 2 & -2 \end{bmatrix}$. Then:

(a) Find the eigenvalues of A.

(a) Find the eigenvalues of
$$A$$
.

Solution: $det(A - \lambda I) = det \begin{pmatrix} 2 - \lambda & 2 & -2 \\ 2 & 1 - \lambda & -1 \\ 2 & 2 & -2 - \lambda \end{pmatrix} = \lambda (\lambda + 1)(2 - \lambda) = 0$

$$\Rightarrow \lambda = -1, 0, 2 \text{ are eigenvalues of } A.$$
[Marks 1+1+1]

- (b) Find algebraic and geometric multiplicities of all the eigenvalues of A.
- **Solution:** From Part (a), all eigenvalues of A are of same algebraic multiplicity 1. [Mark 0.5] Next, $E_{-1} = span(\{(2, -1, 2)\}), E_0 = span(\{(0, 1, 1)\}), \text{ and } E_2 = span(\{(1, 1, 1)\}).$ Hence, all eigenvalues of A are of same geometric multiplicity 1. [Marks 1.5]
- (c) Is the matrix A diagonalizable? If yes, find a matrix P that diagonalizes A. **Solution:** Since eigenvalues of A are different, A is diagonalizable. Next, from Part (b), the required matrix:

$$P = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}.$$
 [Marks 1.5 + 1.5]