

[Solution Key]

KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS

Semester 471 / MATH-244 (Linear Algebra) / Mid-term Exam 1

Max. Marks: 25

Max. Time: 1.5 hrs

Question 1: [Marks: 5]

Determine whether the following statements are true or false:

(i) If A and B are diagonal matrices of same size, then $AB = BA$.

$$\text{True: } \begin{bmatrix} a_{1,1} & 0 & 0 & \dots & 0 \\ 0 & a_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n,n} \end{bmatrix} \begin{bmatrix} b_{1,1} & 0 & 0 & \dots & 0 \\ 0 & b_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & b_{n,n} \end{bmatrix} = \begin{bmatrix} a_{1,1}b_{1,1} & 0 & 0 & \dots & 0 \\ 0 & a_{2,2}b_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n,n}b_{n,n} \end{bmatrix} = \begin{bmatrix} b_{1,1} & 0 & 0 & \dots & 0 \\ 0 & b_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & b_{n,n} \end{bmatrix} \begin{bmatrix} a_{1,1} & 0 & 0 & \dots & 0 \\ 0 & a_{2,2} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{n,n} \end{bmatrix}.$$

(ii) If A and B are $n \times n$ matrices and A is singular, then AB is also singular.True: $|AB| = |A||B| = 0|B| = 0$ (since A being singular satisfies $|A| = 0$). and so AB is singular.(iii) If a matrix A satisfies $A^2 = I_n$, then $A = I_n$ or $A = -I_n$.False: For example, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.(iv) Any square matrix A satisfies $RREF(A) = I$ iff A is invertible.True: $|RREF(A)| = 1$ iff $|A| \neq 0$. Hence, $RREF(A) = I$ iff A is invertible.(v) If the linear system $AX = B$ has solutions $u = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ and $v = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$, then $w = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$ is another solution of the same system.

$$\text{True: } A \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} = A \begin{bmatrix} \frac{2+4}{2} \\ \frac{2+4}{2} \\ \frac{2+4}{2} \end{bmatrix} = \frac{1}{2} \left(A \begin{bmatrix} 2 \\ 2 \end{bmatrix} + A \begin{bmatrix} 4 \\ 4 \end{bmatrix} \right) = \frac{1}{2} (B + B) = B.$$

Question 2: [Marks: 5 + 5]

(a) Let the matrix $A = \begin{bmatrix} a & a & a & a \\ b & a & a & a \\ b & b & a & a \\ b & b & b & a \end{bmatrix}$, where $a \neq 0$ and $b \neq a$. Show that $|A| = a(a-b)^3$ and deduce that the matrix A is invertible.

$$\text{Solution: } |A| = \begin{vmatrix} a & a & a & a \\ b & a & a & a \\ b & b & a & a \\ b & b & b & a \end{vmatrix} = a \begin{vmatrix} 1 & 1 & 1 & 1 \\ b & a & a & a \\ b & b & a & a \\ b & b & b & a \end{vmatrix} = a \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & a-b & a-b & a-b \\ 0 & 0 & a-b & a \\ 0 & 0 & 0 & a-b \end{vmatrix} = a(a-b)^3.$$

Now, $|A| = a(a-b)^3 \neq 0$ since $a \neq 0$ and $b \neq a$. Thus, A is invertible.(b) Let A be the matrix with $A^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$. Find: $(A^T)^{-1}$, $|2A|$, $\text{adj}(A)$, $RREF(A)$. Also find the solution of the homogeneous linear system $AX = 0$.

$$\text{Solution: } (A^T)^{-1} = (A^{-1})^T = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \\ 3 & 3 & 8 \end{bmatrix}. |2A| = 2^3 |A| = 8 |(A^{-1})^{-1}| = 8 |A^{-1}|^{-1} = \frac{8}{|A^{-1}|} = \frac{8}{\begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{vmatrix}} = \frac{8}{-1} = -8.$$

$$\text{adj}(A) = |A|A^{-1} = \frac{1}{|A^{-1}|}A^{-1} = -A^{-1} = -\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}. \text{ Since } |A| = -1 \neq 0, A \text{ is invertible; hence, } RREF(A) = I.$$

Finally, the invertibility of the matrix A gives $X = A^{-1}O = 0$.

Question 3: [Marks: 5 + 5]

(a) Solve the following system of equations by the Gauss-Jordan elimination method:

$$w + x + y + z = 6$$

$$w + y + z = 4$$

$$w + y = 2.$$

$$\text{Solution: } \begin{bmatrix} 1 & 1 & 1 & 1 & 6 \\ 1 & 0 & 1 & 1 & 4 \\ 1 & 0 & 1 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 & 2 \end{bmatrix} \text{ (RREF)}$$

⇒ the variable y is a free and so $\{(2-t, 2, t, 2) | t \in \mathbb{R}\}$ is the solution set of the given system.(b) Under what condition on α and β , the following system of equations has no non-trivial solution?

$$x + 2z = 0$$

$$\alpha x + 8y + 3z = 0$$

$$\beta y + 5z = 0.$$

$$\text{Solution: } \begin{bmatrix} 1 & 0 & 2 & 0 \\ \alpha & 8 & 3 & 0 \\ 0 & \beta & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & \frac{3-2\alpha}{8} & 0 \\ 0 & 0 & 40 - (3-2\alpha)\beta & 0 \end{bmatrix}. \text{ Hence, there is no non-trivial solution if } (3-2\alpha)\beta \neq 40.$$