

[Solution Key]

**KING SAUD UNIVERSITY**  
**COLLEGE OF SCIENCES**  
**DEPARTMENT OF MATHEMATICS**

Semester 461 / MATH-244 (Linear Algebra) / Mid-term Exam 2

Max. Marks: 25

Max. Time:  $1\frac{1}{2}$  hrs.**Note:** Scientific calculators are not allowed.**Question 1:** [Marks: 1+1+1+1+1]

Which of the given choices are correct?

(i) Let  $A = \{u_1, u_2, u_3, u_4\}$  is a subset of  $\mathbb{R}^3$ . Then the set A must be:  
a) a subspace of  $\mathbb{R}^3$  b) ✓ linearly dependent c) linearly independent d) a basis of  $\mathbb{R}^3$ . [Mark 1]

(ii) For the matrix  $M = \begin{bmatrix} 1 & -2 & 0 & 3 & -4 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ , which of the following statements is true?  
a)  $\text{nullity}(M) = 2$  b)  $\text{rank}(M) = 3$  c) ✓  $\text{nullity}(M) = 3$  d)  $\text{rank}(M) = 0$ . [Mark 1]

(iii) Let  $B = \{(1,0,0,1), (-1,1,0,1), (0,0,1,1)\}$  and  $C = \{v_1, v_2, v_3\}$  be two ordered bases for a vector subspace of the Euclidean space  $\mathbb{R}^4$ . If  $B_P C = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix}$  is the transition matrix from  $C$  to  $B$ , then the vector  $v_3$  is equal to:  
a) (1,1,0) b) (2,0,0) c) (2,0,0,2) d) ✓ (0,1,0,2). [Mark 1]

(iv) Let  $u$  and  $v$  be any two vectors in a real inner product space  $(V, \langle \cdot, \cdot \rangle)$  such that  $\|u\| = 3 = \|v\|$ . Which of the following statements is true?  
a)  $|\langle u, v \rangle| \leq 6$  b)  $|\langle u, v \rangle| > 6$  c)  $|\langle u, v \rangle| > 9$  d) ✓  $|\langle u, v \rangle| \leq 9$ . [Mark 1]

(v) Let  $W = \{w_1, w_2, w_3, w_4, w_5\}$  be an orthogonal set of nonzero vectors in an inner product space  $E$  of dimension 5. Then  $W$  must be:  
a) ✓ a basis for  $E$  b) a subspace of  $E$  c) equal to  $E$  d) linearly dependent. [Mark 1]

**Question 2:** [Marks: 3 + 3 + 4]

(a) Show that  $F = \{(x, y, z) \in \mathbb{R}^3; x - y + z = 0, 2x + y - z = 0, x + y + z = 0\}$  is a vector subspace of  $\mathbb{R}^3$ .

**Solution:** Clearly,  $(0,0,0) \in F$ . [Mark 0.5]Next, for all  $\alpha, \beta \in \mathbb{R}$ ,  $(x_1, y_1, z_1), (x_2, y_2, z_2) \in F$ , we have:

$$(\alpha x_1 + \beta x_2) - (\alpha y_1 + \beta y_2) + (\alpha z_1 + \beta z_2) = \alpha(x_1 - y_1 + z_1) + \beta(x_2 - y_2 + z_2) = 0,$$

$$2(\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2) - (\alpha z_1 + \beta z_2) = \alpha(2x_1 + y_1 - z_1) + \beta(2x_2 + y_2 - z_2) = 0,$$

$$(\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2) + (\alpha z_1 + \beta z_2) = \alpha(x_1 + y_1 + z_1) + \beta(x_2 + y_2 + z_2) = 0.$$

[Mark 1.5]

Hence,  $F$  is a vector subspace of  $\mathbb{R}^3$ . [Mark 1]

(b) Show that  $V = \left\{ \begin{bmatrix} 0 & 2x - y \\ x & y \end{bmatrix} : x, y \in \mathbb{R} \right\}$  is a real vector space under usual addition and scalar multiplication of matrices. Also find  $\dim(V)$ .

**Solution:** Clearly,  $V \subseteq M_2(\mathbb{R})$ . [Mark 0.5]

$$\text{Next, } \alpha \begin{bmatrix} 0 & 2x_1 - y_1 \\ x_1 & y_1 \end{bmatrix} + \beta \begin{bmatrix} 0 & 2x_2 - y_2 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} 0 & 2(\alpha x_1 + \beta y_1) - (\alpha x_2 + \beta y_2) \\ \alpha x_1 + \beta y_1 & \alpha x_2 + \beta y_2 \end{bmatrix} \text{ for all } \alpha, \beta, x_1, y_1 \in \mathbb{R}.$$

Thus,  $V$  is a vector subspace of  $M_2(\mathbb{R})$ ; so, it is a vector space. [Marks 0.5 + 0.5]

$$\text{Next, } \begin{bmatrix} 0 & 2x - y \\ x & y \end{bmatrix} = x \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} + y \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \text{ for all } x, y \in \mathbb{R}. \quad \text{[Mark 0.5]}$$

Moreover,  $\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$  and  $\begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$  are linearly independent matrices. Hence,  $\{\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}\}$  is a basis for  $V$ . So,  $\dim(V) = 2$ . [Marks 0.5 + 0.5]

(c) Let  $G = \{(0,0,3,3), (1,0,0,1), (-1,1,0,1), (0,0,1,1)\} \subseteq \mathbb{R}^4$ . Find a basis  $B$  for  $\text{span}(G)$  with  $B \subseteq G$  and then find a basis  $C$  for  $\mathbb{R}^4$  such that  $B \subseteq C$ .

**Solution:**  $\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 1 & 1 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{B} := \{(1,0,0,1), (-1,1,0,1), (0,0,1,1)\}$  is a basis for  $\text{span}(\mathbf{G})$  with  $\mathbf{B} \subseteq \mathbf{G}$ .

[Marks 1+1]

Next,  $\begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & -1 \end{bmatrix} \Rightarrow \mathbf{C} := \{(1,0,0,1), (-1,1,0,1), (0,0,1,1), (1,0,0,0)\}$

is a basis for  $\mathbb{R}^4$  with  $\mathbf{B} \subseteq \mathbf{C}$ . [Marks 1+1]

**Question 3:** [Marks: 4 + 3 + 3]

(a) Let  $\mathbf{B} = \{(0,1,1), (1,1,0), (1,0,1)\}$  and  $\mathbf{C} = \{(1,1,0), (1,0,2), (1,1,1)\}$  be two ordered bases for the

Euclidean space  $\mathbb{R}^3$  and  $[\mathbf{v}]_{\mathbf{C}} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ . Then construct the transition matrix  ${}_{\mathbf{B}}P_{\mathbf{C}}$  from basis  $\mathbf{C}$  to

$\mathbf{B}$ , and then find the coordinate vector  $[\mathbf{v}]_{\mathbf{B}}$ .

**Solution:**  ${}_{\mathbf{B}}P_{\mathbf{C}} = [[(1,1,0)]_{\mathbf{B}} \quad [(1,0,2)]_{\mathbf{B}} \quad [(1,1,1)]_{\mathbf{B}}] = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$  so that  $[\mathbf{v}]_{\mathbf{B}} = {}_{\mathbf{B}}P_{\mathbf{C}}[\mathbf{v}]_{\mathbf{C}} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$ .

[Marks (1+0.5+0.5+0.5) + (1+0.5)]

(b) Consider the vector space  $\mathbf{M}_2(\mathbb{R})$  of  $2 \times 2$  real matrices with the inner product:

$$\langle \mathbf{A}, \mathbf{B} \rangle := \text{trace}(\mathbf{A}\mathbf{B}^T), \forall \mathbf{A}, \mathbf{B} \in \mathbf{M}_2(\mathbb{R}).$$

If  $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  and  $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , then compute the angle  $\theta$  between the matrices  $\mathbf{A}$  and  $\mathbf{B}$ .

**Solution:** Since  $\langle \mathbf{A}, \mathbf{B} \rangle = \text{trace}(\mathbf{A}\mathbf{B}^T) = \text{trace} \left( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) = \text{trace} \left( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) = 0$ ,

[Mark 1]

we get the asked angle:  $\theta = \cos^{-1} \frac{\langle \mathbf{A}, \mathbf{B} \rangle}{\|\mathbf{A}\| \|\mathbf{B}\|} = \cos^{-1} \frac{0}{\|\mathbf{A}\| \|\mathbf{B}\|} = \cos^{-1} 0 = \frac{\pi}{2}$ . [Marks 1 + 0.5 + 0.5]

(c) Let  $x$  and  $y$  be nonzero orthogonal vectors in an inner product space. Then show that  $\{x, y\}$  is linearly independent and  $\|x + y\|^2 = \|x\|^2 + \|y\|^2$ .

**Solution:** The given orthogonality of the vectors  $x$  and  $y$  means  $\langle x, y \rangle = 0$ . If  $\alpha x + \beta y = 0$  with  $\alpha, \beta \in \mathbb{R}$ , then  $\alpha\|x\|^2 = \alpha \langle x, x \rangle + \beta \langle x, y \rangle = \alpha \langle x, x \rangle + \beta \langle y, x \rangle = \alpha \langle x, x \rangle = \alpha\|x\|^2 = 0$ , and so  $\alpha = 0$  since  $x \neq 0$ ; similarly,  $\beta\|y\|^2 = \beta \langle y, y \rangle + \alpha \langle x, y \rangle = \beta \langle y, y \rangle = \beta\|y\|^2 = 0$  gives  $\beta = 0$ . Thus, the set  $\{x, y\}$  is linearly independent. [Marks 0.5 + 1]

Moreover,  $\|x + y\|^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle = \|x\|^2 + \|y\|^2$ . [Marks 1.5]

.

\*\*\*!