

[Solution Key]

King Saud University
College of Sciences
Department of Mathematics
Semester 471 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40**Time: 3 hours****Question 1 [Marks 10]:** Which of the given choices are correct?

(i) If a matrix A is symmetric and $A^T = -A$, then A must be:
 a) identity b) non-singular c) inverse of itself d) zero.

(ii) If A is a 4×4 matrix such that $\text{adj}(A) = A^{-1}$, then the determinant $|\text{adj}(A)|$ is equal to:
 a) $|A|^2$ b) $3|A|$ c) 4 d) $2|A|$.

(iii) If the matrix of coefficients in the linear system $AX = B$ is invertible, then the system must have:
 a) infinitely many solutions b) a unique solution c) no solution d) zero solution.

(iv) Let $B = \{(2,1), (2,3)\}$ and $C = \{(0,1), (2,0)\}$ be ordered bases of a vector space V , then the transition matrix $P_{B \rightarrow C}$ from B to C is:
 a) $\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} -2 & 6 \\ 2 & -2 \end{bmatrix}$.

(v) If $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$, then $\text{rank}(A)$ is:
 a) 0 b) 1 c) 2 d) 3.

(vi) If $A = \begin{bmatrix} -1 & 3 \\ 4 & 11 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix}$ are vectors in the vector space $M_2(\mathbb{R})$ with the standard inner product, then the angle θ between A and B is equal to:
 a) $\theta = \cos^{-1}(\frac{2}{3\sqrt{3}})$ b) $\theta = \cos^{-1}(\frac{\sqrt{2}}{30})$ c) $\theta = \cos^{-1}(\frac{2}{9\sqrt{10}})$ d) $\theta = \cos^{-1}(\frac{2}{\sqrt{30}})$.

(vii) If $T: M_2(\mathbb{R}) \rightarrow \mathbb{R}^2$ is the linear transformation defined by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a,b)$, $\forall a,b,c,d \in \mathbb{R}$, then $\text{ker}(T)$ is equal to:
 a) $\left\{ \begin{bmatrix} s & t \\ 0 & 0 \end{bmatrix} : s, t \in \mathbb{R} \right\}$ b) $\left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ c) $\left\{ \begin{bmatrix} 0 & 0 \\ s & t \end{bmatrix} : s, t \in \mathbb{R} \right\}$ d) $\{(0,0)\}$.

(viii) If $\{(-3r + 4s, r - s, r, s) | r, s \in \mathbb{R}\}$ is the solution set of the homogeneous system $AX = 0$ and T_A is the linear transformation given by $T_A(X) = AX$, then:
 a) $\text{nullity}(T_A) = 2$ b) $\text{nullity}(A) = 0$ c) $\text{rank}(A^T) = 3$ d) $\text{ker}(T_A) = \{0\}$.

(ix) If the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is defined by $T(x_1, x_2) = (x_1 - x_2, x_2 - x_1, 3x_2)$, then the induced matrix $[T]_{C,B}$ with respect to the ordered basis $B = \{(2,0), (1,1)\}$ of \mathbb{R}^2 and the ordered standard basis C of \mathbb{R}^3 is:
 a) $\begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 0 \\ -2 & 0 \\ 0 & 3 \end{bmatrix}$ c) $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 3 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$.

(x) If $A = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$, then the eigenvalues of A^4 are:
 a) 16, 81 b) 2, 3 c) 4, 9 d) -1, 2, 3.

Question 2 [Marks 2 + 2 + 2]:

(a) Let $A = \begin{bmatrix} 1 & 1 & -2 \\ 1 & 2 & -1 \\ 2 & 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$. Find the invertible matrix C that satisfies $AC^{-1} = B$.

$$\text{Solution: } AC^{-1} = B \Rightarrow C = B^{-1}A = \begin{bmatrix} 0 & \frac{-1}{3} & \frac{2}{3} \\ -1 & \frac{1}{3} & \frac{1}{3} \\ 1 & \frac{1}{3} & \frac{-2}{3} \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \\ 1 & 2 & -1 \\ 2 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{2}{3} & \frac{-1}{3} \\ 0 & \frac{1}{3} & \frac{4}{3} \\ 0 & \frac{1}{3} & \frac{-5}{3} \end{bmatrix}.$$

(b) Find all the values of α for which the matrix $\begin{bmatrix} \alpha & 1 & 0 \\ \alpha+2 & 2 & 1 \\ \alpha^2 & 2 & 3 \end{bmatrix}$ is non-invertible.

$$\text{Solution: } \begin{bmatrix} \alpha & 1 & 0 \\ \alpha+2 & 2 & 1 \\ \alpha^2 & 2 & 3 \end{bmatrix} \text{ is non-invertible} \Leftrightarrow \begin{vmatrix} \alpha & 1 & 0 \\ \alpha+2 & 2 & 1 \\ \alpha^2 & 2 & 3 \end{vmatrix} = 0 \Leftrightarrow \alpha = -3, 2.$$

(c) Consider the matrix $A = \begin{bmatrix} 0 & 2 & -1 & 1 \\ 1 & -3 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{bmatrix}$. Find $\text{rank}(A)$ and $\text{nullity}(A^T)$.

$$\text{Solution: } A = \begin{bmatrix} 0 & 2 & -1 & 1 \\ 1 & -3 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & -1 \\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ gives } \text{rank}(A) = 3, \text{ and so} \\ \text{nullity}(A^T) = \text{number of columns} - \text{rank}(A^T) = 3 - \text{rank}(A) = 3 - 3 = 0.$$

Question 3 [Marks 2 + (3 + 2 + 2)]:

(a) Consider the vector subspace $E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0, 2x + 3y = 0\}$ of the vector space \mathbb{R}^3 . Find a basis B of E and a basis C of \mathbb{R}^3 containing B .

Solution: $(x, y, z) \in E \Leftrightarrow (x, y, z) = t(-3, 2, 1)$ for all $t \in \mathbb{R}$. Hence, $B = \{(-3, 2, 1)\}$ is a basis of E . Next,

$$\begin{bmatrix} -3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix} \text{ means } C = \{(-3, 2, 1), (1, 0, 0), (0, 1, 0)\} \text{ is basis of } \mathbb{R}^3 \text{ containing } B.$$

(b) Consider the vectors $u_1 = (1, 1, 0)$, $u_2 = (0, 1, 1)$ and $u_3 = (1, 1, -1)$ in the Euclidean space \mathbb{R}^3 .

(i) Use the Gram-Schmidt process to transform the basis $\{u_1, u_2, u_3\}$ into an orthonormal basis $\{v_1, v_2, v_3\}$ of \mathbb{R}^3 .

Solution: By the Gram-Schmidt process: $w_1 = (1, 1, 0)$, so that $\|w_1\| = \sqrt{2}$ and $v_1 = \frac{1}{\sqrt{2}}(1, 1, 0)$. Next,

$$w_2 = u_2 - \frac{\langle u_2, w_1 \rangle}{\|w_1\|^2} w_1 = \left(-\frac{1}{2}, \frac{1}{2}, 1\right), \text{ so that } \|w_2\| = \sqrt{\frac{3}{2}} \text{ and } v_2 = \frac{\sqrt{2}}{\sqrt{3}}\left(-\frac{1}{2}, \frac{1}{2}, 1\right). \text{ Finally,}$$

$$w_3 = u_3 - \frac{\langle u_3, w_1 \rangle}{\|w_1\|^2} w_1 - \frac{\langle u_3, w_2 \rangle}{\|w_2\|^2} w_2 = \left(-\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right), \text{ so that } \|w_3\| = \sqrt{\frac{1}{3}} \text{ and } v_3 = \sqrt{3}\left(-\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right).$$

Thus, $\{v_1 = \frac{1}{\sqrt{2}}(1, 1, 0), v_2 = \frac{\sqrt{2}}{\sqrt{3}}\left(-\frac{1}{2}, \frac{1}{2}, 1\right), v_3 = \sqrt{3}\left(-\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right)\}$ is the required orthonormal basis of \mathbb{R}^3 .

(ii) Express the vector $u = (1, 2, -2)$ as the linear combination of v_1, v_2, v_3 .

Solution: Since $\{v_1 = \frac{1}{\sqrt{2}}(1, 1, 0), v_2 = \frac{\sqrt{2}}{\sqrt{3}}\left(-\frac{1}{2}, \frac{1}{2}, 1\right), v_3 = \sqrt{3}\left(-\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right)\}$ is an orthonormal basis of \mathbb{R}^3 , we have

$$(1, 2, -2) = u = \sum_{i=1}^3 \langle u, v_i \rangle v_i = \frac{3}{\sqrt{2}}v_1 - \frac{\sqrt{3}}{\sqrt{2}}v_2 + \sqrt{3}v_3.$$

(iii) Find the angle θ between the vectors u and v_1 .

$$\text{Solution: } \theta = \cos^{-1} \frac{\langle u, v_1 \rangle}{\|u\| \|v_1\| \sqrt{2}} = \cos^{-1} \frac{\frac{3}{\sqrt{2}}}{\sqrt{2}} = \cos^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}.$$

Question 4 [Marks 2 + 2 + 3]:

Let $[T]_B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ be the matrix of the linear transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ relative to the ordered basis $B = \{v_1 = (1, 3), v_2 = (1, 4)\}$. Find:

(i) $[T(v_1)]_B$ and $[T(v_2)]_B$.

$$\text{Solution: } [[T(v_1)]_B \ [T(v_2)]_B] = [T]_B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \Rightarrow [T(v_1)]_B = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ and } [T(v_2)]_B = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.$$

(ii) $T(v_1)$ and $T(v_2)$.

Solution: As seen above, $[T(v_1)]_B = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $[T(v_2)]_B = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$, where $B = \{v_1 = (1, 3), v_2 = (1, 4)\}$. Hence,

$$T(v_1) = 1v_1 - 2v_2 = 1(1, 3) - 2(1, 4) = (-1, -5). \text{ Similarly, } T(v_2) = (8, 29).$$

(iii) a formula for $T(x, y)$ for all $(x, y) \in \mathbb{R}^2$.

Solution: For any fixed, $(x, y) \in \mathbb{R}^2$, there exists unique scalars α_1 and α_2 such that:

$$(x, y) = \alpha_1 v_1 + \alpha_2 v_2 = \alpha_1(1, 3) + \alpha_2(1, 4) = (\alpha_1 + \alpha_2, 3\alpha_1 + 4\alpha_2) \Rightarrow \alpha_1 + \alpha_2 = x, 3\alpha_1 + 4\alpha_2 = y.$$

Hence, $\alpha_1 = 4x - y$ and $\alpha_2 = -3x + y$. Thus, by Part (ii), for all $(x, y) \in \mathbb{R}^2$:

$$\begin{aligned} T(x, y) &= T(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 T(v_1) + \alpha_2 T(v_2) = (4x - y)(-1, -5) + (-3x + y)(8, 29) \\ &= (-28x + 9y, -107x + 34y). \end{aligned}$$

Question 5 [Marks 4 + 2 + 2]:

Consider the matrix $A = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

(i) Find the eigenvalues of A and bases for the corresponding eigenspaces.

Solution: Eigenvalues: Real number λ is an eigenvalue of the given matrix $A \Leftrightarrow |A - \lambda I| = 0 \Leftrightarrow \lambda = -1, 0, 1$.

Eigen spaces: $(x, y, z) \in E_{-1} \Leftrightarrow A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = - \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow (A + I) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow (x, y, z) = z(-3, 1, 1)$. So, $E_{-1} = \langle (-3, 1, 1) \rangle$. Similarly, $E_0 = \langle (-1, 1, 0) \rangle$ and $E_1 = \langle (0, 1, 0) \rangle$.

(ii) Is the matrix A diagonalizable? Justify your answer.

Solution: From the solution of Part (i), we know that the 3×3 matrix A has three different eigenvalues. Hence, the given matrix A is diagonalizable.

(iii) Compute A^9 .

$$\text{Solution: } \begin{bmatrix} -3 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}^{-1} A \begin{bmatrix} -3 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow A^9 = \begin{bmatrix} -3 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}^9 \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & -3 \\ 1 & 0 & 2 \end{bmatrix} = A.$$

***!