

[Solution Key]

King Saud University

College of Sciences

Department of Mathematics

Semester 461 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40

Time: 3 hours

Name: _____

ID:

Section:

Signature:

Note: Attempt all the five questions. Scientific calculators are not allowed.

Question 1 [Marks 1x 10]: Choose the correct answer:

(vii) The set $\{(-3, 4, 0), (4, x, 0), (0, 0, x)\}$ of vectors in the Euclidean space \mathbb{R}^3 is orthogonal iff:

(c) (iii) If $T \in \mathbb{M}^2 \times \mathbb{M}^2$ in diagonal configuration with $T(1,2) = (1,2) = 1$ and $T(1,1) = (5,-2)$, then it is a 1-1 mapping.

$$\begin{bmatrix} 1 & 4 \end{bmatrix} \quad \begin{bmatrix} 1 & 5 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 6 & 1 \end{bmatrix}$$

$$(a) \begin{bmatrix} 1 & 2 \\ 2 & -5 \end{bmatrix} \quad (b) \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix} \quad (c) \begin{bmatrix} 0 & 5 \\ 5 & -3 \end{bmatrix} \quad (d) \begin{bmatrix} 0 & 2 \\ 2 & -1 \end{bmatrix}$$

() σ I σ

(a) π : (b) ∇A : (c) $RRF(A)$: (d) $arg(A)$

(x) If A is diagonalizable matrix, then $\det(A)$ equals:

(a) The sum of the eigen values of A (b) The product of the eigen values of A (c) zero (d) Number of columns in A .

Question 2 [Marks 2 + 2 + 2]:

(a) Let a matrix A satisfy $A^2 + A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$. Then show that A is invertible.

Solution: $|A| |A + I| = |A(A + I)| = |A^2 + A| = \begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix} = 9 \neq 0$ [Mark 1]
 $\Rightarrow |A| \neq 0$; which means that the matrix A is invertible. [Mark 1]

(b) Consider $B, C \in M_3(\mathbb{R})$ with $|B| = 2 |C| = 1$. Then evaluate $|3 C B \text{adj}(B^{-3})|$.

Solution: $\text{adj}(B) = |B|B^{-1} \Rightarrow \text{adj}(B^{-3}) = |B|^{-3}B^3$. [Mark 1]
Hence, $|3 C B \text{adj}(B^{-3})| = |3 C B (|B|^{-3}B^3)| = |3 C| = 27/2$. [Mark 1]

(c) Find the values of a, b such that the following system of linear equations

$$x - 2y + 3z = 4$$

$$3x - 4y + 5z = b$$

$$2x - 3y + az = 5$$

has: (i) no solution (ii) unique solution.

Solution: $[A|I] = \left[\begin{array}{ccc|c} 1 & -2 & 3 & 4 \\ 3 & -4 & 5 & b \\ 2 & -3 & a & 5 \end{array} \right] \sim \dots \sim \left[\begin{array}{ccc|c} 1 & -2 & 3 & 4 \\ 0 & 1 & -2 & (b-12)/2 \\ 0 & 0 & a-4 & (6-b)/2 \end{array} \right]$ [Mark 1]

Hence, (i) $a = 4$ and $b \neq 6$ (ii) $a \neq 4$. [Mark 1]

Question 3 [Marks 3 + 3 + 2]:

(a) Find a subset B of $G = \{(1,1,-4,-3), (2,0,2,-2), (1,2,-9,-5)\}$ that forms a basis for $\text{span}(G)$. Then express each vector in $G - B$ as a linear combination of vectors in B .

Solution: $\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 0 & 2 \\ -4 & 2 & -9 \\ -3 & -2 & -5 \end{array} \right] \sim \dots \sim \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$ (REF). [Mark 1]

Hence, $B = \{(1,1,-4,-3), (2,0,2,-2)\} \subseteq G$ forms a basis for $\text{span}(G)$. [Mark 1]

Moreover, $(1,2,-9,-5) = 2(1,1,-4,-3) - \frac{1}{2}(2,0,2,-2)$. [Mark 1]

(b) Consider the matrix $A = \left[\begin{array}{ccccc} 1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{array} \right]$. Then find a basis for the column space $\text{col}(A)$ and dimension of the null space $N(A)$.

Solution: $A = \left[\begin{array}{ccccc} 1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{array} \right] \sim \dots \sim \left[\begin{array}{ccccc} 1 & 0 & -2 & 1 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$ (REF). [Mark 1]

Hence, $\{(1, -1, 0, 1), (0, 1, 2, 1), (3, -3, 1, 4)\}$ is a basis for the column space $\text{col}(A)$ [Mark 1]

and $\dim(N(A)) = 5 - 3 = 2$. [Mark 1]

(c) Let B and B' be two ordered bases for \mathbb{R}^2 with a transition matrix $P_{B \rightarrow B'} = \begin{bmatrix} 5 & 3 \\ -1 & 1 \end{bmatrix}$ from B to B' . If $[\mathbf{v}]_{B'} = \begin{bmatrix} 11 \\ -3 \end{bmatrix}$ is the coordinate vector of a vector $\mathbf{v} \in \mathbb{R}^2$ relative to the basis B' . Then find $[\mathbf{v}]_B$.

Solution: $P_{B' \rightarrow B} = (P_{B \rightarrow B'})^{-1} = \begin{bmatrix} 5 & 3 \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} -1 & -3 \\ 1 & 5 \end{bmatrix}$. [Mark 1]

Hence, $[v]_B = P_{B' \rightarrow B} [v]_{B'} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. [Mark 1]

Question 4 [Marks 2 + 3 + 5]:

(a) Let $\{v_1 = (1,0,0,0), v_2 = (0,1,0,0), v_3 = (0,0,1,0), v_4\}$ be the orthonormal basis obtained by applying the Gram-Schmidt algorithm on the basis $\{u_1 = (3,0,0,0), u_2 = (3,3,0,0), u_3 = (3,3,3,0), u_4 = (3,3,3,3)\}$ of Euclidean inner product space \mathbb{R}^4 . Then find the vector v_4 .

Solution: According to the Gram-Schmidt algorithm,

$$w_4 = u_4 - \frac{\langle u_4, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_4, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle u_4, v_3 \rangle}{\|v_3\|^2} v_3 \quad [\text{Mark 1}]$$

$$= (3,3,3,3) - 3(1,0,0,0) - 3(0,1,0,0) - 3(0,0,1,0) = (0,0,0,3). \quad [\text{Mark 0.5}]$$

Hence, $v_4 = \frac{1}{\|w_4\|} w_4 = \frac{1}{3} (0,0,0,3) = (0,0,0,1)$. [Mark 0.5]

(b) Let v_0 be any fixed vector in an inner product space V of dimension n and $T: V \rightarrow \mathbb{R}$ be the linear transformation defined by $T(v) = \langle v, v_0 \rangle$ for all $v \in V$. If $v_0 \in \text{Ker}(T)$, then show that $\text{nullity}(T) = n$.

Solution: If $v_0 \in \text{Ker}(T)$ then $0 = T(v_0) = \langle v_0, v_0 \rangle$; which means $v_0 = 0$. [Mark 1]

So, $T(v) = \langle v, v_0 \rangle = \langle v, 0 \rangle = 0$ for all $v \in V$; meaning that $\text{Ker}(T) = V$. [Mark 1]

Thus, $\text{nullity}(T) = \dim(\text{Ker}(T)) = \dim(V) = n$. [Mark 1]

(c) Let $\mathbf{B} = \{u_1 = (1, 0, 0), u_2 = (0, 1, 0), u_3 = (0, 0, 1)\}$ and $\mathbf{C} = \{v_1 = (1, 1, 1), v_2 = (1, 1, 0), v_3 = (1, 0, 0)\}$ be two ordered bases for \mathbb{R}^3 . Let the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be defined by:

$$T(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_1, x_1 - x_3).$$

Find the matrix $[T]_{\mathbf{B}}$ of the transformation T relative to the basis \mathbf{B} and then use it to find the matrix $[T]_{\mathbf{C}}$.

Solution: $[T(u_1)]_{\mathbf{B}} = [(1, -1, 1)]_{\mathbf{B}} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Similarly, $[T(u_2)]_{\mathbf{B}} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $[T(u_3)]_{\mathbf{B}} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$. [Mark 1]

So, $[T]_{\mathbf{B}} = [[T(u_1)]_{\mathbf{B}} \ [T(u_2)]_{\mathbf{B}} \ [T(u_3)]_{\mathbf{B}}] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$. [Mark 1]

Next, $P_{\mathbf{C} \rightarrow \mathbf{B}} = [[v_1]_{\mathbf{B}} \ [v_2]_{\mathbf{B}} \ [v_3]_{\mathbf{B}}] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. [Mark 1]

and $P_{\mathbf{B} \rightarrow \mathbf{C}} = (P_{\mathbf{C} \rightarrow \mathbf{B}})^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$. [Mark 1]

Hence, $[T]_{\mathbf{C}} = P_{\mathbf{B} \rightarrow \mathbf{C}} [T]_{\mathbf{B}} P_{\mathbf{C} \rightarrow \mathbf{B}} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$. [Mark 1]

Question 5 [Marks 2 + 1 + 3]: Consider the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$. Then:

(a) Find the eigenvalues of A .

Solution: $-(1 + \lambda)(1 - \lambda)(2 - \lambda) = \begin{vmatrix} 1 - \lambda & 0 & 3 \\ 1 & 2 - \lambda & 1 \\ 0 & 0 & -1 - \lambda \end{vmatrix} = |A - \lambda I| = 0$ [Mark 1]

\Rightarrow the eigenvalues of A are $-1, 1, 2$. [Mark 1]

(b) Is the matrix A diagonalizable? Justify your answer.

Solution: Since the matrix A is of size 3×3 having 3 different eigenvalues, it is diagonalizable. [Mark 1]

(c) Find a diagonal matrix D and an invertible matrix such that $P^{-1}AP = D$.

Solution: It is easily seen that $E_{-1} = \langle (-9, 1, 6) \rangle$, $E_1 = \langle (-1, 1, 0) \rangle$ and $E_2 = \langle (-1, 1, 0) \rangle$. [Mark 1]

$$\text{Hence, } P = \begin{bmatrix} -9 & -1 & -1 \\ 1 & 1 & 1 \\ 6 & 0 & 0 \end{bmatrix} \text{ and } D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad [\text{Mark 1}]$$

$$\text{with } P^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{6} \\ -1 & 0 & -\frac{3}{2} \\ 1 & 1 & \frac{4}{3} \end{bmatrix} \text{ satisfying } P^{-1}AP = D. \quad [\text{Mark 1}]$$

***!