

[Draft]

King Saud University
College of Sciences
Department of Mathematics
Semester 462 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40

Time: 3 hours

Name: _____

ID:

Section:

Signature:

Note: Attempt all the five questions. Calculators are not allowed.

Question 1 [Marks 10]: Which of the given choices is correct?

(i) If square of a matrix A is zero matrix, then $I - A$ is equal to:
 a) 0 b) $(A-I)^{-1}$ c) $(A+I)^{-1}$ d) $A + I$

(ii) If A is a square matrix of order 3 with $\det(A) = 2$, then $\det(\det(\det(\frac{1}{\det(A)} A^2) A^3) A^{-1})$ is equal to:
 a) $1/4$ b) $1/2$ c) $1/3$ d) $1/16$

(iii) If the general solution of $AX = 0$ is $(-2r, 4r, r)$, $r \in \mathbb{R}$, and $(1, 0, -2)$ is a solution of $AX = B$, then the general solution of $AX = B$ is:
 a) $(1 - 2r, 4r, r - 2)$ b) $(-2r, 0, -2r)$ c) $(-2r, 4r, r)$ d) $(-2r - 1, 4r, r - 2)$

(iv) A subset S of \mathbb{R}^3 is a basis of the vector space \mathbb{R}^3 if S is equal to:
 a) $\{(1,0,0), (0,2,1), (0,6,0)\}$ b) $\{(1,1,0), (2,1,0), (3,2,0)\}$ c) $\{(1,1,0), (0,0,0), (3,2,1)\}$ d) $\{(1,1,0), (0,0,1), (2,2,1)\}$

(v) If $B = \{u_1 = (2,1), u_2 = (4,3)\}$ and $B' = \{u'_1 = (0,1), u'_2 = (6,0)\}$ are ordered bases of \mathbb{R}^2 , then the transition matrix $P_{B' \rightarrow B}$ from B' to B is equal to:
 a) $\begin{bmatrix} 1 & -1/2 \\ -2 & 3/2 \end{bmatrix}$ b) $\begin{bmatrix} -2 & 9 \\ 1 & -3 \end{bmatrix}$ c) $\begin{bmatrix} -2/3 & 3 \\ 1/3 & -1 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

(vi) If B is a 3×3 matrix with $\det(B) = 2$, then $\text{nullity}(B)$ is equal to:
 a) 2 b) 1 c) 3 d) 0

(vii) If $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that $\|\mathbf{u}\|^2 = 5$, $\|\mathbf{v}\|^2 = 1$, $\langle \mathbf{u}, \mathbf{v} \rangle = -2$, then $\langle \mathbf{u} + 2\mathbf{v}, 5\mathbf{u} - \mathbf{v} \rangle$ is equal to:
 a) $\sqrt{5}$ b) 5 c) 9 d) 41

(viii) If $S = \{A, I_2\} \subseteq M_{2 \times 2}(\mathbb{R})$, where A is a non-symmetric matrix, then S must be:
 a) linearly dependent b) a spanning set for $M_{2 \times 2}(\mathbb{R})$ c) linearly independent d) orthogonal

(ix) Let T be the transformation from the Euclidean space \mathbb{R}^2 to \mathbb{R} given by $T(\mathbf{u}) = \|\mathbf{u}\|$ for all $\mathbf{x} \in \mathbb{R}^2$, where $\|\mathbf{u}\|$ is the Euclidean norm of \mathbf{u} . Then, for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ and $k \in \mathbb{R}$, T satisfies:
 a) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ b) $T(\mathbf{u} + \mathbf{v}) \leq T(\mathbf{u}) + T(\mathbf{v})$ c) $T(\mathbf{0}) > 0$ d) $T(k\mathbf{u}) = kT(\mathbf{u})$

(x) Zero is an eigen value of the matrix $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ with geometric multiplicity equal to:
 a) 1 b) 2 c) 3 d) 4

Question 2 [Marks 2 + 2 + 3]:

(a) Find the square matrix A of size 3 such that $A^{-1}(A - I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and evaluate $\det(A)$.

(b) Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -2 \\ -2 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 1 \\ -1 & 1 & -2 \\ 1 & -1 & -2 \end{bmatrix}$. Find a matrix X that satisfies $XA = B$.

(c) Solve the following system of linear equations by the Gauss elimination method:

$$\begin{array}{l} x + y + z = 1 \\ 2x + 2z = 3 \\ 3x + 5y + 4z = 2. \end{array}$$

Question 3 [Marks 3 + 3 + 3]:

Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Then:

(a) Find a basis and the dimension for each of the vector spaces $\text{row}(A)$, $\text{col}(A)$, and $N(A)$.

(b) Decide with justification whether the following statements are true or false:

(i) $\text{row}(A) = \text{row}(B)$ (ii) $\text{col}(A) = \text{col}(B)$ (iii) $N(A) = N(B)$.

(c) Find an orthonormal basis relative to the Euclidean inner product for each of the spaces $\text{row}(A)$, $\text{col}(A)$, and $N(A)$.

Question 433 [Marks 3 + (1 + 2)]:

(a) Construct an orthogonal basis C of the Euclidean space \mathbb{R}^3 by applying the Gram-Schmidt algorithm on the given basis $B = \{v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1)\}$, and then find the coordinate vector of $v = (1,1,0) \in \mathbb{R}^3$ relative to the orthogonal basis C .

(b) Let \mathcal{P}_2 denote the vector space of real polynomials with degree ≤ 2 . Consider the linear transformation $T: \mathbb{R}^3 \rightarrow \mathcal{P}_2$ defined by: $T(1,0,0) = x^2 + 1, T(0,1,0) = 3x^2 + 2, T(0,0,1) = -x^2$. Then:

(i) Compute $T(a, b, c)$, for all $(a, b, c) \in \mathbb{R}^3$.

(ii) Find a basis for each of the vector spaces $\text{ker}(T)$ and $\text{Im}(T)$.

Question 5 [Marks 2 + 3 + 3]: Let $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 1 & -1 \\ 2 & 2 & -2 \end{bmatrix}$. Then:

(a) Find the eigenvalues of A .

(b) Find algebraic and geometric multiplicities of all the eigenvalues of A .

(c) Is the matrix A diagonalizable? If yes, find a matrix P that diagonalizes A .

***!