

Question 2 [Marks 2 + 2 + 3]:

(a) Find the square matrix A of size 3 such that $A^{-1}(A - I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and evaluate $\det(A)$.

(b) Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -2 \\ -2 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 1 \\ -1 & 1 & -2 \\ 1 & -1 & -2 \end{bmatrix}$. Find a matrix X that satisfies $XA = B$.

(c) Solve the following system of linear equations by the Gauss elimination method:

$$\begin{array}{l} x + y + z = 1 \\ 2x + 2z = 3 \\ 3x + 5y + 4z = 2. \end{array}$$

Question 3 [Marks 3 + 3 + 3]:

Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Then:

(a) Find a basis and the dimension for each of the vector spaces $\text{row}(A)$, $\text{col}(A)$, and $N(A)$.

(b) Decide with justification whether the following statements are true or false:

(i) $\text{row}(A) = \text{row}(B)$ (ii) $\text{col}(A) = \text{col}(B)$ (iii) $N(A) = N(B)$.

(c) ~~Find an orthonormal basis relative to the Euclidean inner product for each of the spaces $\text{row}(A)$, $\text{col}(A)$, and $N(A)$.~~
 ~~Find all 3×3 matrices Z such that $AZ = 0$.~~
 ~~[Faster question using Col and to avoid repetition with Q4(u)]~~

Question 433 [Marks 3 + (1 + 2)]:

(a) Construct an ~~orthogonal~~ basis C of the Euclidean space \mathbb{R}^3 by applying the Gram-Schmidt algorithm on the given basis $B = \{v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1)\}$, and then find the coordinate vector of $v = (1,1,0) \in \mathbb{R}^3$ relative to the ~~orthogonal~~ basis C .
 ~~orthonormal~~

(b) Let \mathcal{P}_2 denote the vector space of real polynomials with degree ≤ 2 . Consider the linear transformation $\mathbf{T}: \mathbb{R}^3 \rightarrow \mathcal{P}_2$ defined by: $\mathbf{T}(1,0,0) = x^2 + 1, \mathbf{T}(0,1,0) = 3x^2 + 2, \mathbf{T}(0,0,1) = -x^2$. Then:

(i) Compute $\mathbf{T}(a, b, c)$, for all $(a, b, c) \in \mathbb{R}^3$.

(ii) Find a basis for each of the vector spaces $\ker(\mathbf{T})$ and $\text{Im}(\mathbf{T})$.

Question 5 [Marks 2 + 3 + 3]: Let $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 1 & -1 \\ 2 & 2 & -2 \end{bmatrix}$. Then:

(a) Find the eigenvalues of A .

(b) Find algebraic and geometric multiplicities of all the eigenvalues of A .

(c) Is the matrix A diagonalizable? If yes, find a matrix P that diagonalizes A .

***!