[Solution Key]

King Saud University College of Sciences

Department of Mathematics

Semester 461 / Final Exam / MATH-244 (Linear Algebra) Max. Marks: 40 Time: 3 hours

Name:	ID:	Section:	Signature:
Note: Attempt all the five que	estions. Scientific calcula	tors are not allowed.	
Question 1 [Marks 1× 10]: C	choose the correct answer:		
(i) If the rows of a 3×4 m	atrix are linearly dependent,	then the maximum din	nension for $col(A)$ is:
(a) 1	(b) √ 2	(c) 3	(d) 4
(ii) If A is a nonzero 4×7	matrix, then the possible val	ues for $nullity(A)$ are:	
(a) 2,3,4,5,6	(b) 3,4,5,6,7	(c) √ 3,4,5,6	(d) 1,2,3,4
(iii) If u and v are nonzero(a) u	vectors in an inner product so $(b) u + v$	pace with $d(u, v) = d(c) u - v$	(u, -v), then u is orthogonal to: (d) $\checkmark v$.
(iv) If $\{u, v\}$ is linearly indep	pendent and $\{u, v, w\}$ is linear	arly dependent, then:	
(a) { <i>u</i> , <i>w</i> } is linearly independent.	(b) {v, w} is linearly independent.	(c) $\checkmark w \in sp$	$an\{u,v\}$ (d) $u \in span\{v,w\}$
(v) If $\begin{bmatrix} 1 & 2 \\ 3 & -3 \end{bmatrix}$ is the transition	on matrix from the basis $\{u, u\}$	$(1,1)$ } to the basis $\{(5,6)$	4), v } for \mathbb{R}^2 , then u is equal to:
(a) (1,3)	(b) (4, -1).	(c) √ (14,11]	(d) (3,0).
(vi) If $S = \{v_1 = (1,1), v_2 = (1,1), v_3 = (1,1), v_4 = (1,1), v_5 = (1,1), v_6 = (1,1), v_7 = (1,1), v_8 = (1,1), v_8$	1,0)} is a basis for \mathbb{R}^2 and th	e transformation $T: \mathbb{R}^2 \to$	\mathbb{R}^2 is such that $T(v_1) = (1, -2)$
and $T(v_2) = (-4,1)$, the	n $T(5,-3)$ equals:		
(a) √ (-35, 14)	(b) (2, -10)	(c) (2, 5)	(d) (2, 10).
(vii) The set $\{(-3, 4, 0), (4, x)\}$	(x, 0), (0, 0, x) of vectors in	the Euclidean space \mathbb{R}^3	is orthogonal iff:
(a) $x = 1$	(b) $\checkmark x = 3$	(c) $x = -3$	(d) $x = 5$
(viii) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear	r transformation with $T(1,0) =$	= (1,2) and $T(1,1) = (5,1)$	-3), then its standard matrix is:
(a) $\checkmark \begin{bmatrix} 1 & 4 \\ 2 & -5 \end{bmatrix}$	(b) $\begin{bmatrix} 1 & 5 \\ 2 & -3 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 2 \\ 5 & -3 \end{bmatrix}$	(d) $\begin{bmatrix} 1 & 6 \\ 2 & -1 \end{bmatrix}$
(ix) The eigenvalues of a squ	uare matrix A are the same a	s the eigenvalues of:	
(a) A^2 .	(b) $\checkmark A^T$.	(c) $RREF(A)$.	(d) adj(A)
(x) If A is diagonalizable matrix	ix, then det(A) equals:		
(a) The sum of the eigen values of A	(b) √The product of the eigen values of	(c) Zero	(d) Number of columns in A.

Question 2 [Marks 2 + 2 + 2]:

(a) Let a matrix A satisfy $A^2 + A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$. Then show that A is invertible.

Solution:
$$|A||A+I| = |A(A+I)| = |A^2+A| = \begin{vmatrix} 3 & 0 \\ 0 & 3 \end{vmatrix} = 9 \neq 0$$
 [Mark 1]

$$\Rightarrow |A| \neq 0$$
; which means that the matrix A is invertible. [Mark 1]

(b) Consider B, $C \in M_3(\mathbb{R})$ with $|\mathbf{B}| = 2|\mathbf{C}| = 1$. Then evaluate $|3 \ C \ B \ adj(B^{-3})|$.

Solution:
$$adj(B) = |B|B^{-1} \Rightarrow adj(B^{-3}) = |B|^{-3}B^{3}$$
. [Mark 1]

Hence,
$$|3 \ C \ B \ adj(B^{-3})| = |3 \ C \ B \ (|B|^{-3}B^3)| = |3 \ C| = 27/2.$$
 [Mark 1]

(c) Find the values of a, b such that the following system of linear equations

$$x - 2y + 3z = 4$$
$$3x - 4y + 5z = b$$
$$2x - 3y + az = 5$$

has: (i) no solution

(ii) unique solution.

Solution:
$$[A|I] = \begin{bmatrix} 1 & -2 & 3 & | & 4 \\ 3 & -4 & 5 & | & b \\ 2 & -3 & a & | & 5 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & -2 & 3 & | & 4 \\ 0 & 1 & -2 & | & (b-12)/2 \\ 0 & 0 & a-4 & | & (6-b)/2 \end{bmatrix}.$$
 [Mark 1]

Hence, (i)
$$a = 4$$
 and $b \neq 6$ (ii) $a \neq 4$. [Mark 1]

Question 3 [Marks 3 + 3 + 2]:

(a) Find a subset \mathbf{B} of $\mathbf{G} = \{(1,1,-4,-3), (2,0,2,-2), (1,2,-9,-5)\}$ that forms a basis for $span(\mathbf{G})$. Then express each vector in $\mathbf{G} - \mathbf{B}$ as a linear combination of vectors in \mathbf{B} .

Solution:
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 2 \\ -4 & 2 & -9 \\ -3 & -2 & -5 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} (REF).$$
 [Mark 1]

Hence,
$$\mathbf{B} = \{(1, 1, -4, -3), (2, 0, 2, -2)\} \subseteq \mathbf{G}$$
 forms a basis for $span(\mathbf{G})$. [Mark 1]

Moreover,
$$(1, 2, -9, -5) = 2(1, 1, -4, -3) - \frac{1}{2}(2, 0, 2, -2)$$
. [Mark 1]

(b) Consider the matrix $A = \begin{bmatrix} 1 & 0 - 2 & 1 & 3 \\ -1 & 1 & 5 - 1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{bmatrix}$. Then find a basis for the column space col(A) and dimension of the null space N(A).

Solution:
$$A = \begin{bmatrix} 1 & 0 - 2 & 1 & 3 \\ -1 & 1 & 5 - 1 - 3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 - 2 & 1 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} (REF).$$
 [Mark 1]

Hence, $\{(1, -1, 0, 1), (0, 1, 2, 1), (3, -3, 1, 4)\}$ is a basis for the column space col(A) [Mark 1]

and
$$dim(N(A)) = 5 - 3 = 2$$
. [Mark 1]

(c) Let \mathbf{B} and $\mathbf{B'}$ be two ordered bases for \mathbb{R}^2 with a transition matrix $\mathbf{P}_{\mathbf{B}\to\mathbf{B'}} = \begin{bmatrix} 5 & 3 \\ -1 & -1 \end{bmatrix}$ from \mathbf{B} to $\mathbf{B'}$. If $[\mathbf{v}]_{\mathbf{B'}} = \begin{bmatrix} 11 \\ -3 \end{bmatrix}$ is the coordinate vector of a vector $\mathbf{v} \in \mathbb{R}^2$ relative to the basis $\mathbf{B'}$. Then find $[\mathbf{v}]_{\mathbf{B}}$.

Solution:
$$P_{B'\to B} = (P_{B\to B'})^{-1} = \begin{bmatrix} 5 & 3 \\ -1 & -1 \end{bmatrix}^{-1} = \frac{-1}{2} \begin{bmatrix} -1 & -3 \\ 1 & 5 \end{bmatrix}$$
. [Mark 1]

Hence,
$$[v]_B = P_{B' \to B}[v]_{B'} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
. [Mark 1]

Question 4 [Marks 2 + 3 + 5]:

(a) Let $\{v_1 = (1,0,0,0), v_2 = (0,1,0,0), v_3 = (0,0,1,0), v_4\}$ be the orthonormal basis obtained by applying the Gram-Schmidt algorithm on the basis $\{u_1 = (3,0,0,0), u_2 = (3,3,0,0), u_3 = (3,3,3,0), u_4 = (3,3,3,3)\}$ of Euclidean inner product space \mathbb{R}^4 . Then find the vector v_4 .

According to the Gram-Schmidt algorith **Solution:**

$$w_4 = u_4 - \frac{\langle u_4, v_1 \rangle}{||v_1||^2} v_1 - \frac{\langle u_4, v_2 \rangle}{||v_2||^2} v_2 - \frac{\langle u_4, v_3 \rangle}{||v_3||^2} v_3$$
[Mark 1]
$$= (3,3,3,3) - 3(1,0,0,0) - 3(0,1,0,0) - 3(0,0,1,0) = (0,0,0,3).$$
[Mark 0.5]

=
$$(3,3,3,3) - 3(1,0,0,0) - 3(0,1,0,0) - 3(0,0,1,0) = (0,0,0,3)$$
. [Mark 0.5]

Hence,
$$v_4 = \frac{1}{||w_4||} w_4 = \frac{1}{3} (0,0,0,3) = (0,0,0,1).$$
 [Mark 0.5]

(b) Let v_0 be any fixed vector in an inner product space V of dimension n and $T:V\to\mathbb{R}$ be the linear transformation defined by $T(v) = \langle v, v_0 \rangle$ for all $v \in V$. If $v_0 \in Ker(T)$, then show that nullity(T) = n.

If $v_0 \in Ker(T)$ then $0 = T(v_0) = \langle v_0, v_0 \rangle$; which means $v_0 = 0$. **Solution:**

So,
$$T(v) = \langle v, v_0 \rangle = \langle v, 0 \rangle = 0$$
 for all $v \in V$; meaning that $Ker(T) = V$. [Mark 1]

Thus,
$$nullity(T) = \dim(Ker(T)) = \dim(V) = n$$
. [Mark 1]

Thus, $nullity(T) = \dim(Ker(T)) = \dim(V) = n$. [Mark (c) Let $\mathbf{B} = \{u_1 = (1,0,0), u_2 = (0,1,0), u_3 = (0,0,1)\}$ and $\mathbf{C} = \{v_1 = (1,1,1), v_2 = (1,1,0), v_3 = (1,0,0)\}$ be two ordered bases for \mathbb{R}^3 . Let the linear transformation $\mathbf{T} : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by:

 $T(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_1, x_1 - x_3)$. Find the matrix $[T]_B$ of the transformation T relative to the basis B and then use it to find the matrix $[T]_C$.

Solution:
$$[T(u_1)]_B = [(1, -1, 1)]_B = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
. Similarly, $[T(u_2)]_B = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $[T(u_3)]_B = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$. [Mark 1]
So, $[T]_B = [[T(u_1)]_B [T(u_2)]_B [T(u_3)]_B] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 11 & 0 & -1 \end{bmatrix}$. [Mark 1]

So,
$$[T]_B = [[T(u_1)]_B [T(u_2)]_B [T(u_3)]_B] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$$
. [Mark 1]

Next,
$$P_{C \to B} = [[v_1]_B \ [v_2]_B \ [v_3]_B] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 [Mark 1]

Next,
$$P_{C \to B} = \begin{bmatrix} [v_1]_B & [v_2]_B & [v_3]_B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 [Mark 1]
and $P_{B \to C} = (P_{C \to B})^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$. [Mark 1]

Hence,
$$[T]_C = P_{B \to C}[T]_B P_{C \to B} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$
. [Mark 1]

Hence, $[T]_C = P_{B \to C}[T]_B P_{C \to B} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$.

Question 5 [Marks 2 + 1 + 3]: Consider the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$. Then:

(a) Find the eigenvalues of A.

Solution:
$$-(1+\lambda)(1-\lambda)(2-\lambda) = \begin{vmatrix} 1-\lambda & 0 & 3 \\ 1 & 2-\lambda & 1 \\ 0 & 0 & -1-\lambda \end{vmatrix} = |A-\lambda I| = 0$$
 [Mark 1]

$$\Rightarrow$$
 the eigenvalues of A are $-1, 1, 2$. [Mark 1]

(b) Is the matrix **A** diagonalizable? Justify your answer.

Solution: Since the matrix A is of size 3×3 having 3 different eigenvalues, it is diagonalizable. [Mark 1]

(c) Find a diagonal matrix D and an invertible matrix such that $P^{-1}AP = D$.

Solution: It is easily seen that
$$E_{-1} = <(-9,1,6)>$$
, $E_{1} = <(-1,1,0)>$ and $E_{2} = <(0,1,0)>$. [Mark 1.5]

Hence,
$$P = \begin{bmatrix} -9 & -1 & 0 \\ 1 & 1 & 1 \\ 6 & 0 & 0 \end{bmatrix}$$
 and $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. [Mark 1.5]
