

**KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS**

Semester 452 / MATH-244 (Linear Algebra) / Mid-term Exam 1

Max. Marks: 25

Max. Time: 1.5 hrs

Note: Scientific calculators are not allowed.

Question 1: [Marks: 3 + 4 + 3]

(a). Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{bmatrix}$. Compute A^2 and then use A^2 to find A^{-1} .

(b). Let $A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 5 & 1 & 0 & -2 \\ -5 & 0 & 1 & 1 \\ -2 & 0 & 0 & 1 \end{bmatrix}$. Find A^{-1} and then use A^{-1} to find $\text{adj}(A)$.

(c). Let A be a 3×3 matrix with $\det(A) = 2$. Evaluate $\det(\text{adj}(A))$.

Question 2: [Marks: 4 + 4]

(a). Let $A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$. Find the matrix $M = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ such that $AM = MA$.

(b). Find the values of a , b and c so that $(1, -2, 3)$ is the solution of following system of linear equations:

$$2ax + 4by + 2cz = 6$$

$$ax + 6by + cz = -2$$

$$3ax + 4by + cz = 4.$$

Question 3: [Marks: 3 + 4]

(a). Use the Gauss-Jordan elimination method to solve the linear system $AX = B$, where:

$$A = \begin{bmatrix} 2 & -1 & -4 & 3 \\ 3 & -2 & -5 & 4 \\ 3 & -3 & -2 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

(b). Find all the non-trivial solutions of the following homogeneous system:

$$2x + 2y + 4z = 0$$

$$w - y - 3z = 0$$

$$2w + 3x + y + z = 0$$

$$-2w + x + 3y - 2z = 0.$$

***!