Detection and Estimation of Some Abnormal Constituents in Urine

BCH472 [Practical]

1- Physical Examination (abnormal):

2- Chemical Examination:

• The following are some abnormal constituent that <u>not normally</u> found in <u>detectable</u> amount:

Positive in Urine	Cause	Notes
Blood (RBC) (hematuria)	 Bleeding because of damage to kidney or genitourinary system, eg: Renal Calculi, Renal Tumor, Trauma to kidneys. Urinary tract infection. Malignant hypertension. 	• Any pink, red or brown urine must be considered as bloody until proved otherwise.
Hemoglobinuria	• Intravascular hemolysis due to hemolytic anemia.	
Leukocyte (WBC)	• Urinary tract infection bacteria.	• Urine with positive results from the dipstick should be examined microscopically for WBCs and bacteria.
Ascorbic acid	• Large urinary concentrations arise from therapeutic doses of vitamin C.	4

2- Chemical Examination cont':

Positive in Urine	Cause	Notes
Glucose (Glycosuria)	 Blood glucose level exceeds the reabsorption capacity of the tubules, eg, Diabetes mellitus. Defect in the tubular reabsorption eg. fanconi syndrome. 	Normally, Glucose is present in the glomerular filtrate and reabsorbed by the proximal tubules. (see next slide)
Ketone bodies (ketonuria)	• Occur whenever increased amounts of fat are metabolized eg, Diabetes mellitus, Starvation and altered carbohydrate metabolism.	• Urine may have a fruity (acetone) smell .
Nitrite	• Urinary tract infection.	Bacteria that can reduce the nitrate to nitrite.

-Glucose level <u>exceeds</u> the reabsorption capacity in diabetes patients:

2- Chemical Examination cont':

Positive in Urine	Cause	Notes
Bilirubin	• Elevated amount of bilirubin in the blood stream, eg, Bile duct obstruction.	• The urine may be dark with a yellowish foam if much is present.
Uroblinogen	• Increased production eg, hemolytic anemia .	• Its presence does <u>not give a</u> colored foam (urobilinogen is colorless).
Amino acid (aminoaciduria)	 Blood amino acid level exceeds the reabsorption capacity of the tubules eg, Phenylketonuria, Alkaptouria Defect in the tubular reabsorption eg, fanconi syndrome, cystinuria. 	
Protein	Acute infection.Primary kidney disease.Secondary kidney disease.	

-Bilirubin and Urobilinogen :

-Bilirubin and Urobilinogen:

Test	In Health	In Hemolytic Disease	In Hepatic Disease	In Biliary Obstruction
Urine urobilinogen	Normal	Increased	Increased	Low or absen

NOTE: Biliary obstruction refers to the blockage of any duct that carries bile from the liver to the gallbladder or from the gallbladder to the small intestine.

-Common Correlations in Urinalysis:

Microscopic Elemen	ts Physical Examination	Dipstick Measurement
Red blood cells White blood cells	Turbidity, red to brown colo Turbidity	or Blood Protein Nitrite Leukocytes
Epithelial cast cells Bacteria	Turbidity Turbidity, odor	Protein pH Nitrite Leukocytes
Crystals	Turbidity, odor	рН

A MANUAL OF Laboratory and Diagnostic Tests

NINTH EDITION

For more information...

-Test strip (dipstick):

- Normally, substances such as nitrite, proteins, glucose, ketone bodies, bilirubin, urobilinogen and blood are present in **very small quantities** that is <u>not</u> capable of detection by this method.
- → But present in detectable amount are <u>not normal.</u>

(False positive and false negative are common when using dipstick)

-Notes in using test strip:

- Reagent strips should be stored in their <u>original container</u>.
- The lid should be kept tightly <u>closed</u>. Strips should **not** be used if expired or discolored. Strips should not be exposed to sunlight, moisture, heat, or cold.
- Specific reagents should be read at the appropriate time after dipping in urine, as recommended by the manufacturer.
- The strip should **not** be dipped for more than a second in the urine, and excess urine should be blotted off on the edge of absorbent paper to prevent mixing of reagents.

-Types of urine specimens:

- Type of specimen and collection procedure are determined by physician and <u>depend on the tests to be performed</u>.
- There are basically four types of urine specimens:

Sample type	Sampling	Purpose
Random specimen	No specific time most common, taken anytime of day	Routine screening, chemical
Morning sample	First urine in the morning, most concentrated	Pregnancy test, microscopic test
Clean catch midstream	Discard first few ml, collect the rest	Culture
24 hours	All the urine passed during the day and night and next day I st sample is collected.	used for quantitative and qualitative analysis of substances

• Note: 24h sample is necessary for accurate quantitative results.

Practical Part

- Objectives:

- 1. The semi-quantitative detection of some abnormal constituents using test-strips.
- 2. The detection of amino acids in a urine sample using ninhydrin.
- 3. The effect of the type of urine collection in the detection of urine constituents.

1- Detection of some abnormal constituents of urine using test strip:

-Method:

- You will have a urine samples.
- You have to fill the following table and then the probable diagnosis:

Test	Urine Sample	
Volume	3000 ml	
Color		
Odor		
pH		
Specific gravity		
Protein		
Blood		
Bilirubin		
Uroblinogen		
Glucose		
Ketone		
Nitrite		
Leukocyte		
Clinical Diagnosis for the sample:		

2- Detection of amino acid using ninhydrin:

- Principle :

- Ninhydrin reacts with all amino acids <u>except proline</u> and <u>hydorxyproline</u> at pH 3-4 to give a purple colored compound. → Proline will give a yellow color.
- 1. Initially, the amino acid is <u>oxidized</u> to an aldehyde containing one carbon atom less together with the release of **ammonia** and **carbon dioxide**.
- 2. Then the ammonia, ninhydrin and the reaction product hydrindantin react to form the purple product.

-Method:

• As standards, use proline and glycine as the following table:

Solution	Volume (ml)
Glysine	1
Proline	1
Urine Sample	1

- Add a 1ml of ninhydrin solution to each test-urine.
- Boil the contents of each test tube for 2 minutes.
- Record your observations.

Solution	Observation
Glycine	
Proline	
Urine sample 3	

3- The effect of the type of urine collection on the detection of Urine constituents:

-Method:

- You have two samples, one is <u>random urine sample</u>, the other is <u>24-hour urine</u> <u>sample</u> from the **same patient**.
- Compare between the two samples in the presence of the proteins using the test strip.

Test Parameter	24 hour Urine sample	Random urine Sample
Protein (+ or -)		

References:

- A Manual of Laboratory and Diagnostic Tests 9th edition (January , 2014), Frances T Fischbach RN, BSN, MSN By Lippincott Williams & Wilkins Publishers
- The Abnormal Urinalysis, Hiren P. Patel, MD Pediatr Clin N Am 53 (2006) 325 337
- Clinical Biochemistry, An Illustrated Colour Text 4th edition, Allan Gaw, Michael J. Murphy, Robert A. Cowan, Denis St. J. O'Reilly, Michael J. Stewart, James Shepherd
- BCH 472 BCH practical note