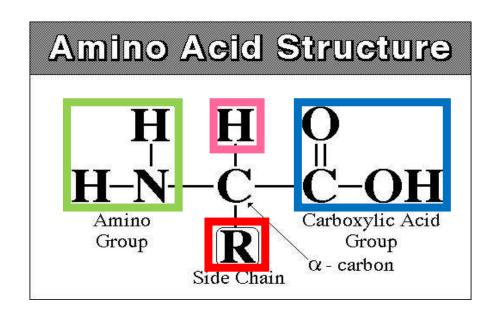
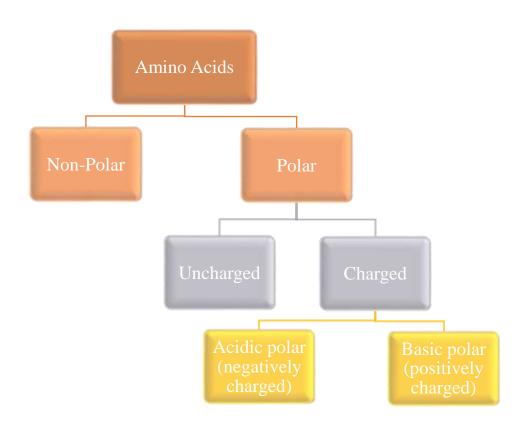
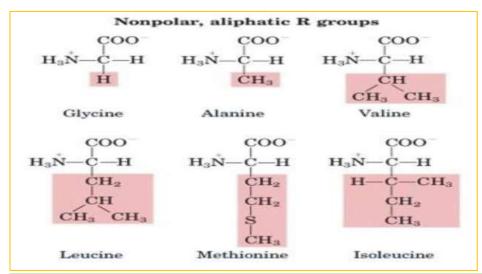

Qualitative Tests of Amino Acids

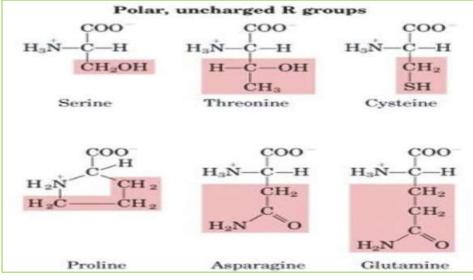
BCH303 [Practical]

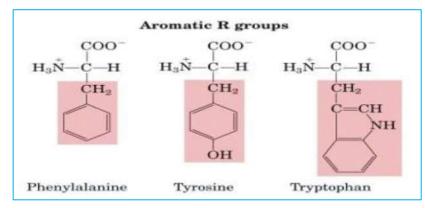

Amino Acids:

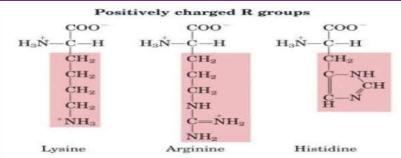
- Amino acid's role.
- There are 20 natural amino acids that are found within proteins.
- \rightarrow In our bodies All of them are L- α amino acids.

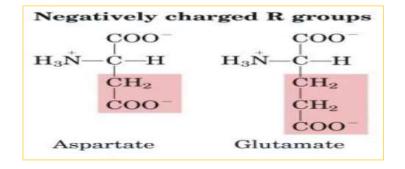


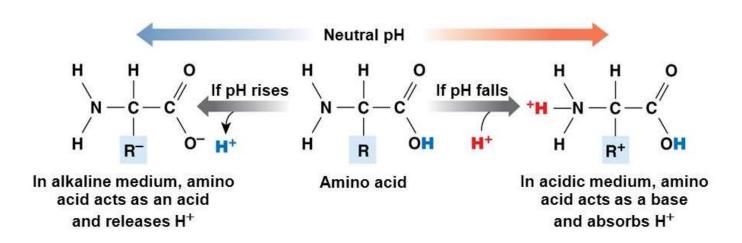

General structure of amino acids:



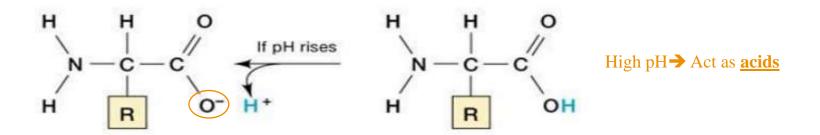

Classification of amino acids:




Twenty standard amino acids

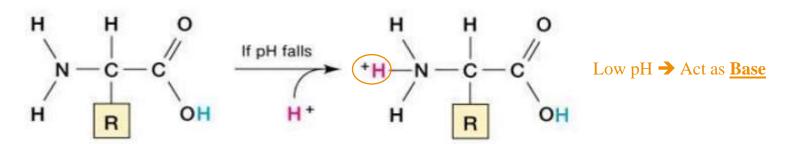

Some properties of Amino Acids:

- 1. Amphoteric Compounds.
- 2. Isoelectric point (pI).
- 3. Optical Activity.
- 4. Light Absorption.


Some properties of Amino Acids:

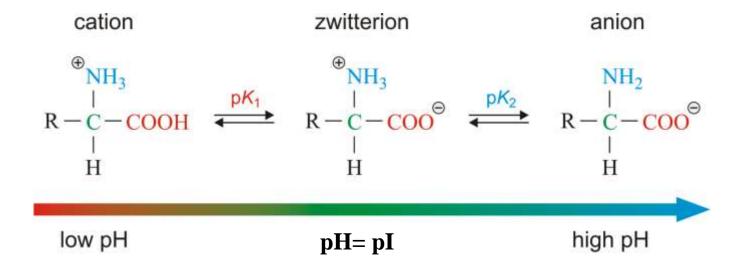
1. Amphoteric Compounds:

- What is **Amphoteric** compounds?
- Amphoteric properties of amino acids due to the presence of their ionizable α -amino and α carboxylic group can act sometimes as acids and sometimes as bases depending on the pH
 of their media.



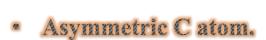
A. Presence of **carboxyl group COOH** that able to donate proton (H⁺) "acidic behavior", and converted to COO:

B. Presence of **amino group NH**₂ that able to accept proton (H^+) "basic behavior", and converted to NH_3^+ :

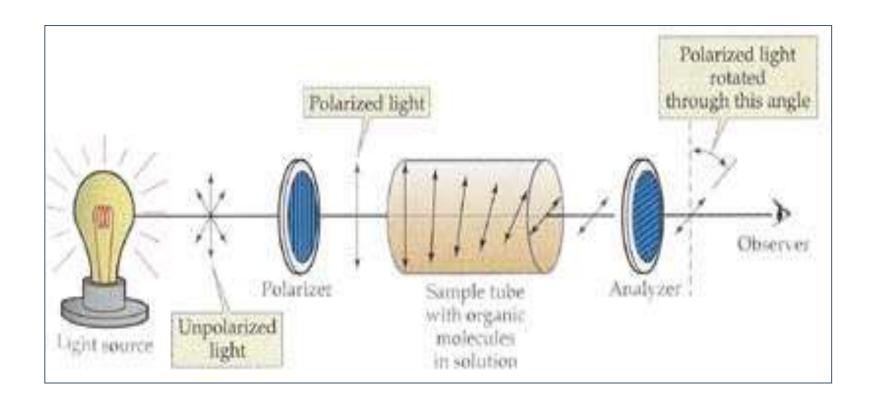

$$NH_2 \rightarrow NH_3^+$$

Some properties of Amino Acids cont':

2. Isoelectric point (pI):

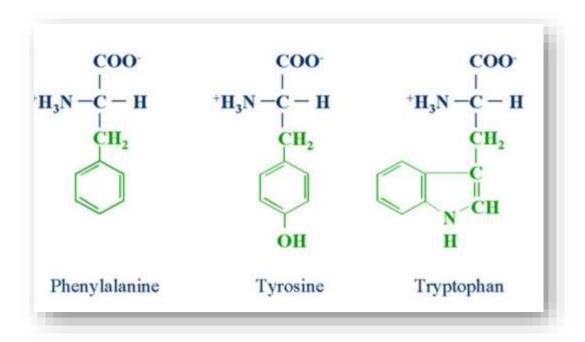

- It is the pH value at which the **positive charge** equals the **negative charge** (i.e. the net charge of this molecule equals zero) → Zwitter ion
- Electric field?
- Solubility?
- <u>Different pI</u>.

Some properties of Amino Acids cont':


3. Optical Activity:

- Amino acids are able to <u>rotate</u> polarized light either to:
 - \rightarrow The left (Levorotatory) \rightarrow (-) Amino acid
 - \rightarrow The right (Dextrorotatory) \rightarrow (+) Amino acid

• Glycine ?



Some properties of Amino Acids cont':

4. Light Absorption:

- The aromatic amino acids absorb ultraviolet light at 280nm.
- proteins?

Practical part

Qualitative tests of amino acids

Solubility Test. Ninhydrin test: for α -L amino acids. Xanthoproteic test: for Aromatic amino acids. Sakaguchi Test: for arginine. Millon's test: for amino acids containing hydroxy phenyl group (Tyrosine) Lead sulfite test: for of amino acids containing sulfhydral group (- SH) (Cysteine)

Experiment 1 : Solubility Test

Objective:

• Investigate the solubility of selected amino acid in various solutions.

Principle:

- Amino acids are generally soluble in water. This is because the presence of amino and carboxyl group.
- Insoluble in non-polar organic solvents such as hydrocarbons (e.g. chloroform, ethanol....).

Experiment 1 : Solubility Test

Method:

- 1. Add 2ml of different solvents in 4 clean test tubes then place 0.5 ml of each amino acid.
- 2. Shake the tubes thoroughly, then leave the solution for about one minute.
- 3. Notice what happened to the solution.
- 4. Record your result.

Results:

Amino acid	Solvent	Degree of solubility
Glycine	Water	
	NaOH	
	HCl	
	Chloroform	
Arginine	Water	
	NaOH	
	HCl	
	Chloroform	
Glutamine	Water	
	NaOH	
	HCl	
	Chloroform	_

soluble

insoluble

Soluble

Insoluble

Experiment 2: Ninhydrin test

Objective:

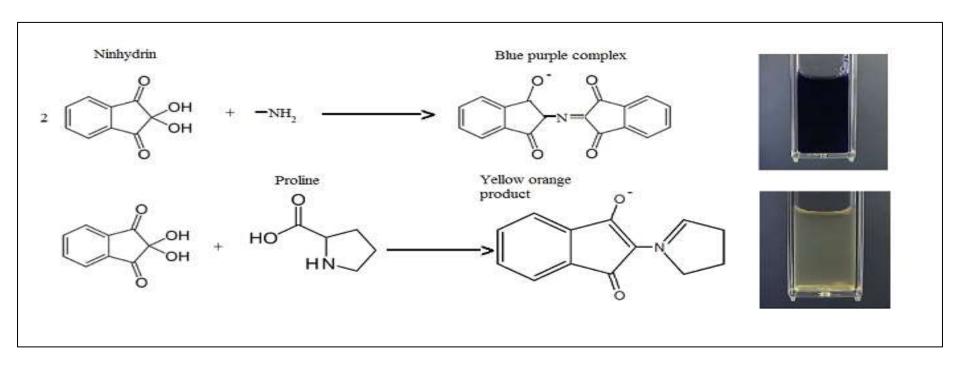
• To detect α-amino acids.

Principle:

- **1.**Ninhydrin (triketohydrindene hydrate) degrades amino acids into aldehydes (on pH range 4-8), ammonia and CO2 though a series of reactions.
- 2. Ninhydrin then condenses with ammonia and hydrindantin to produce an intensely blue or purple pigment, sometimes called ruhemann's purple

All amino acids that have a free amino group will give positive result (purple color) .

Except


OH + H-N +
$$CO_2(g) + 2 H_2O$$

ninhydrin proline yellow product

While not free amino group-proline and hydroxy-proline (amino acids) will give a (yellow color).

Note: Many substances other than amino acids, such as amines will yield a blue color with ninhydrin, particularly if reaction is carried out on filter paper.

Experiment 2: Ninhydrin test

Experiment 2: Ninhydrin test

Method:

- 1-Place 1 ml of each of the a.a solutions in a test tube and add 1 ml of ninhydrin solution.
- 2- Boil the mixture over a water bath for 2 min.
- 3- Allow to cool and observe the blue-purple color formed.
- 4- Record your results.

Results:

Tube	Observation
Glycine	
Tryptophan	
Proline	

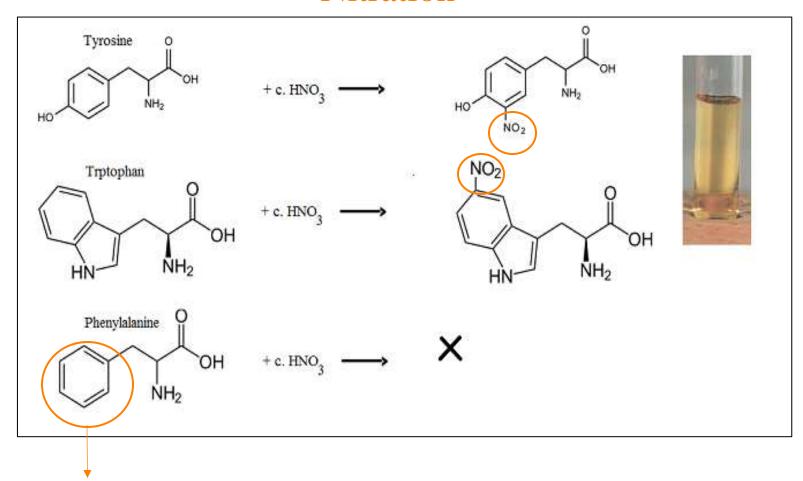
Ninhydrin is a strong oxidizing agent, it should be handled with care.

Experiment 3 : Xanthoproteic test

Objective:

• To differentiate between aromatic amino acids which give **positive** results and other amino acids.

Principle:


Concentrated nitric acid react with aromatic ring present in the amino acid side chain [nitration reaction] \rightarrow giving the solution yellow color.

Note:

Amino acids tyrosine and tryptophan \rightarrow contain activated benzene rings [aromatic nucleus] which are easily nitrated to yellow-colored compounds.

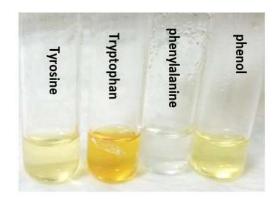
The aromatic ring of phenyl alanine dose not react with nitric acid despite it contains a benzene ring, but it is not activated, therefore it will not react

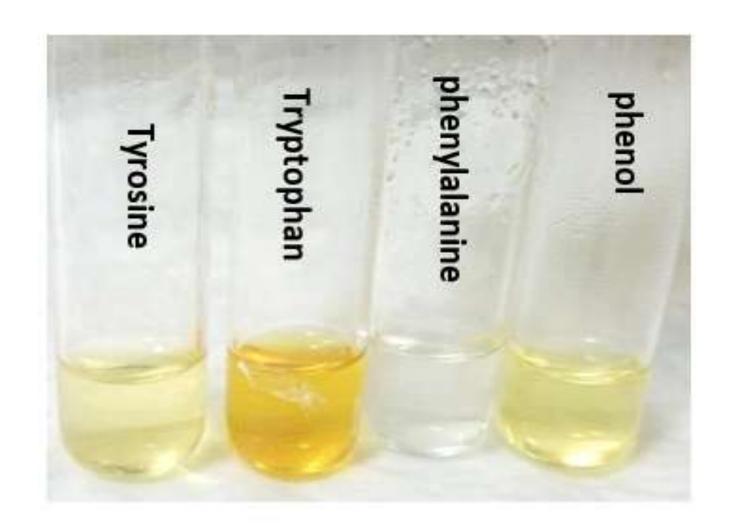
Nitration

benzene ring is not activate

Experiment 3: Xanthoproteic test

Method:


1. Label four tubes (1 - 4), then add 1 ml of each amino acid solutions and phenol solution to those test tubes each alone.

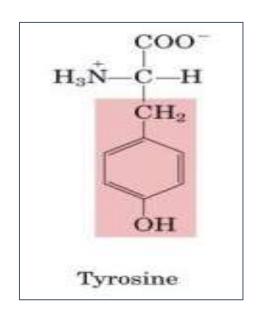

Concentrated HNO₃ is a toxic, , it should be handled with care.

- 2. Add 1 ml of concentrated HNO₃. then record your result
- 3. Now COOL THOROUGHLY under the tap and CAUTIOSLY add 5 drops of 10M NaOH to make the solution strongly alkaline (the alkaline is added to be sure about the nitration).

Results:

Tube	Observation	
	+ HNO ₃	+NaOH
Tyrosine		
Tryptophan		
Phenylalanine		
Phenol		

Experiment 4 : Millon's test


Objective:

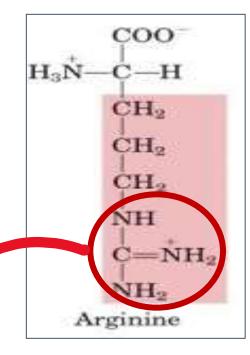
• This test is specific for **Tyrosine** → because it is the only amino acid containing a phenol group.

Principle:

Note:

All phenols (compound having benzene ring and OH attached to it) give positive results in Millon's test.

Experiment 5 : Sakaguchi Test


Objective:

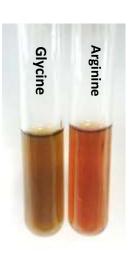
Detection of amino acid containing gauanidium group

→ test for **Arginine**.

Principle:

• In **alkaline** solution, arginine react with <u>α-naphthol and</u> sodium hypobromite /chlorite as an oxidize agent, to form red complexes as a positive result.

gauanidium group


Experiment 5: Sakaguchi Test

Method:

- 1. Label 2 test tube and place in each one 2 ml of the amino acid solution.
- 2. Add to each tube 2ml of NaOH solution. Mix well
- 3. Add to each tube 5 drops of α -naphthol solution. Mix well
- 4. Add to each tube 5 drops of sodium hypobromite solution, and record your result.

Results:

Tube	Observation
Glycine	
Arginine	

Experiment 6 : Lead Sulfite Test

Objective:

• This test specific for—SH [sulfhydral group]containing amino acid → Cysteine.

Principle:

- Sulphur in cysteine, is converted to sodium sulfide by boiling with 40% NaOH.
- The Na₂S (sodium sulfide)can be detected by the precipitation of PbS (lead sulfide) from an alkaline solution when adding lead acetate (CH₃COO)₂ Pb.

Cysteine
$$+2 \text{ NaOH} \xrightarrow{\text{heat}} \text{Na}_2\text{S}$$

$$\text{Na}_2\text{S} + (\text{CH}_3\text{COO})_2\text{Pb} \xrightarrow{\text{PbS}} + 2\text{CH}_3\text{COONa}$$

48 hours