تجاوز إلى المحتوى الرئيسي
User Image

رشا بنت محمد العيدان Dr.Rasha M. AlEidan

Assistant Professor

أستاذ مساعد

علوم الحاسب والمعلومات
6T47

نبذة تعريفية / مختصر السيرة الذاتية

Name:          Rasha Mohammad Fahad AL_Eidan 

 Assistant Professor

  King Saud University (KSU), Riyadh, KSA 

HONORS AND AWARD: 

Outstanding Paper Award Winner at the Literati Network Awards for Excellence 2012. 

PUBLICATIONS :

  • Outstanding Paper Award Winner at the Literati Network Awards for Excellence 2012. AlEidan, R., AlKhalifa, H., Al-Salman, A., “Towards the Measurement of Arabic Weblogs Credibility Automatically”, The 11th International Conference on Information Integration and Web-based Applications & Services (iiWAS2009). Malaysia, 14-15December 2009. 

 

  • AlEidan, R., Al-Braheem , L., El-Zaart, A.,“ LINE DETECTION BASED ON THE BASIC MASKS AND IMAGE ROTATION”, International Conference on Computer Engineering and Technology (ICCET 2010). China, 16-18 April 2010. 

 

  • AlEidan, R., AlKhalifa, H., Al-Salman, A., “Measuring The Credibility of Arabic Content in Twitter”, Fifth International Conference on Digital Information Management (ICDIM 2010). Canada, 6-8 June 2010.  

 

  • AlEidan, R., AlKhalifa, H., Al-Salman, A.,“Measuring The Credibility of Arabic Content Automatically”, First Higher Education Conference, Riyadh 2010.  

 

 

  • R. M. Al Eidan, "Hand biometrics: Overview and user perception survey," 2013 Second International Conference on Informatics & Applications (ICIA), Lodz, Poland, 2013, pp. 252-257, doi: 10.1109/ICoIA.2013.6650265. 

 

  • Al-Eidan, Rasha & Al-Khalifa, Hend & Al-Salman, Abdul. (2017). Wrist-Worn Wearable Survey: Review and Challenges. Poster at International Saudi Health Informatics Conference (ISHIC 2017), Riyadh 2017. 

 

  • Al-Eidan, Rasha & Al-Khalifa, Hend & Al-Salman, Abdul. (2018). A Review of Wrist-Worn Wearable: Sensors, Models, and Challenges. Journal of Sensors. 2018. 1-20. 10.1155/2018/5853917. 

 

  • Al-Eidan, Rasha & Al-Khalifa, Hend & Al-Salman, AbdulMalik. (2020). Deep-Learning-Based Models for Pain Recognition: A Systematic Review. Applied Sciences. 10. 5984. 10.3390/app10175984.