تجاوز إلى المحتوى الرئيسي
User Image

مها بنت محمد بن عبدالعزيز اليحيى Maha Al-Yahya

Associate Professor

عضو هيئة تدريس في قسم تقنية المعلومات

علوم الحاسب والمعلومات
مبنى رقم ٦- الدور الأرضي
المنشورات
مقال فى مجلة
2019
تم النشر فى:

A Comparative Study of Machine Learning Methods for Genre Identification of Classical Arabic Text

اليحيى, مها . 2019

The purpose of this study is to evaluate the performance of five supervised machine learning methods for the task of automated genre identification of classical Arabic texts using text most frequent words as features. We design an experiment for comparing five machine-learning methods for the genre identification task for classical Arabic text. We set the data and the stylometric features and vary the classification method to evaluate the performance of each method. Of the five machine learning methods tested, we can conclude that Support Vector Machine (SVM) are generally the most effective. The contribution of this work lies in the evaluation of the five machine learning methods for the task of genre identification for classical Arabic text using stylometric features.

نوع عمل المنشور
بحث علمي مصنف ضمن ISI
رقم المجلد
٦٠
رقم الانشاء
٢
مجلة/صحيفة
CMC-Computers, Materials & Continua
الصفحات
421-433
مزيد من المنشورات
publications

Fake news detection (FND) remains a challenge due to its vast and varied sources, especially on social media platforms. While numerous attempts have been made by academia and the industry to…

بواسطة Lama Al-Zahrani , Maha Al-Yahya
2024
publications

Abstract: In the domain of law and legal systems, jurisprudence principles (JPs) are considered major sources of legislative reasoning by jurisprudence scholars. Generally accepted JPs are often…

بواسطة Nafla AlRumayyan, Maha Al-Yahya
2022