King Saud University
College of Engineering
Electrical Engineering Department

EE208: Logic Design
(First Semester 1428/1429H)

Second Mid-Term Exam

<table>
<thead>
<tr>
<th>Instructors</th>
<th>Prof. A. Nouh, Dr. W. Gharieb, and Dr. Ridha AL Jamal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>MON, 30 Dhual-Qa’dah, 1428H (December 10, 2007)</td>
</tr>
<tr>
<td>Time</td>
<td>7:00-8:30 PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

الإجابة على نفس الورقة في المكان المخصص لكل سؤال

<table>
<thead>
<tr>
<th>اسم الطالب</th>
<th>الرقم الجامعي</th>
<th>التوقيع</th>
</tr>
</thead>
</table>
Question 1:
 a) Draw the internal circuit to implement a 3/8 decoder with enable input (3 Marks)

 b) Implement the following function using only one decoder 2/4 with inverted outputs.
 \[F(a, b, c) = \sum m(1, 4, 5) \] (3 Marks)

Answer to question 1:
Question 2:

Let consider two multiplexers: the 74151 (Mux 8x1) and 74150 (Mux 16x1) as depicted in the following figure:

![Multiplexer Diagram](image)

Answer to question 2:

a/ Find the truth table of the multiplexer 16x1

b/ Construct this multiplexer using two multiplexers 74151

c/ Construct a 64x1 multiplexer using four 74150 16x1 multiplexers and one 74151 8x1 multiplexer.

(7 Marks)
Question 3:

a) Use PLA with 3 inputs, 3 product terms, and 2 outputs to implement the following functions

\[F_1(A, B, C, D) = \sum m(1, 2, 3, 8) + \sum d(0, 10, 12) \]
\[F_2(A, B, C, D) = \sum m(0, 2, 8, 9, 10, 11, 13, 15) \]

Write only the program table

(4 Marks)

a) Compute the ROM size to implement the following function where X is a 3-bits input code and Y is the output code

\[Y = 40 - (X-5)^2 \]

(3 Marks)

Answer to question 3: