We've been learning kinematics; describing motion without understanding what the cause of the motion was. Now we are going to learn dynamics!!

Isaac Newton (1642-1727)

Laws of Motion
Law of Gravity
Calculus
Nature of Light
Forces

- Forces are what cause an object to move

Can someone tell me what force is?

The above statement is not entirely correct. Why?

Because when an object is moving with a constant velocity no force is exerted on the object!!!

- Usually a push or pull
- Vector
- Either contact or field force

Measuring forces

- Forces are often measured by determining the elongation of a calibrated spring.
- Forces are vectors!! Remember vector addition.
- To calculate net force on an object you must use vector addition.
5.2 Newton’s First Law of Motion:

An object continues in a state of rest or in a state of uniform motion at a constant speed along a straight line unless compelled to change that state by a net force.

In other words;

If the net force $\sum F$ exerted on an object is zero the object continues in its original state of motion. That is, if $\sum F = 0$, an object at rest remains at rest and an object moving with some velocity continues with the same velocity.

Why? Because objects have “inertia”
Inertia:
The “tendency” that Newton observed for objects at rest to stay at rest and objects in motion to stay in uniform motion in a straight line.

How do we measure inertia?

MASS
- A measure of the resistance of an object to changes in its motion due to a force
- Scalar
- SI units are kg

Don't confuse mass and weight

Balanced forces:

We say that the NET force is zero!

Acceleration:

Remember that the word “acceleration” denotes an increase in velocity OR a decrease in velocity OR a change in the direction of velocity.
5.4 Newton’s 2\textsuperscript{nd} Law of Motion

The amount of acceleration \(a\) produced by a force \(F\) depends on the mass \(m\) of the object being accelerated.

Mathematically:

\[ F = m \times a \]

Alternatively:

\[ a = F/m \]

\[ a \propto \frac{1}{m} \]

\[ \vec{a} \propto \vec{F} \quad \text{or} \quad \vec{F} = m \vec{a} \]
Newton's 2nd Law of Motion

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

\[ \sum \vec{F} = m \cdot \vec{a} \]

\[ F_x = m \cdot a_x \]
\[ F_y = m \cdot a_y \]
\[ F_z = m \cdot a_z \]

Units of Force

\[ F = m \times a \]
\[ = [\text{kg}] \times \text{m/s}^2 \]
\[ \equiv \text{[N]} \]

Standard Unit: Newton

US Customary unit is pound (lb)
\[ 1 \text{N} = 0.225 \text{lb} \]

One Newton: The force required to accelerate a 1 kg mass by 1 m/s^2
Example 5.1
Determine the magnitude and direction of acceleration of the puck whose mass is 0.30 kg and is being pulled by two forces, $F_1$ and $F_2$, as shown in the picture, whose magnitudes of the forces are 8.0 N and 5.0 N, respectively.

**Components of $F_1$**
- $F_{1x} = F_1 \cos \theta_1 = 8.0 \times \cos (60^\circ) = 4.0 \text{ N}$
- $F_{1y} = F_1 \sin \theta_1 = 8.0 \times \sin (60^\circ) = 6.9 \text{ N}$

**Components of $F_2$**
- $F_{2x} = F_2 \cos \theta_2 = 5.0 \times \cos (-20^\circ) = 4.7 \text{ N}$
- $F_{2y} = F_2 \sin \theta_2 = 5.0 \times \sin (-20^\circ) = -1.7 \text{ N}$

**Components of total force $F$**
- $F_x = F_{1x} + F_{2x} = 4.0 + 4.7 = 8.7 \text{ N} = ma_x$
- $F_y = F_{1y} + F_{2y} = 6.9 - 1.7 = 5.2 \text{ N} = ma_y$

**Magnitude and direction of acceleration $a$**
- $a_x = \frac{F_x}{m} = \frac{8.7}{0.3} = 29 \text{ m/s}^2$
- $a_y = \frac{F_y}{m} = \frac{5.2}{0.3} = 17 \text{ m/s}^2$

- $|a| = \sqrt{(29)^2 + (17)^2} = 34 \text{ m/s}^2$
- $\theta = \tan^{-1} \left( \frac{a_y}{a_x} \right) = \tan^{-1} \left( \frac{17}{29} \right) = 30^\circ$

- $\vec{a} = a_x \hat{i} + a_y \hat{j} = (29 \hat{i} + 17 \hat{j}) \text{ m/s}^2$
Combining Law of gravity with Newton’s 2nd Law of motion, we can derive an expression for the acceleration due to gravity.

- Objects are attracted to the Earth.
- This attractive force is the force of gravity $F_g$.
  \[
  F_g = m \cdot g
  \]
- The magnitude of this force is called the weight of the object.
- The weight of an object is, thus $mg$.

The weight of an object can vary with location (less weight on the moon than on earth, since $g$ is smaller).

The mass of an object does not vary.

### 5.6 Newton’s 3rd Law of Motion

Whenever one body exerts a force on a second body, the second body exerts an oppositely directed force of equal magnitude on the first body.

“For every action there is an equal and opposite reaction.”

If two objects interact, the force $F_{12}$ exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force $F_{21}$ exerted by object 2 on object 1:

\[
F_{12} = -F_{21}
\]

Action and reaction forces always act on different objects.
Where is the action and reaction force?

**Action-Reaction Pairs: Act On Different Bodies**

- Forces exerted **BY a body** *DO NOT* (directly) influence its motion!!
- Forces exerted **ON a body** (*BY some other body*) *DO* influence its motion!!
- When discussing forces, use the words “**BY**” and “**ON**” carefully.

---

The Normal Force:

The normal force, $F_N$, is one component of the force that a surface exerts on an object with which it is in contact, namely, the component perpendicular to the surface.

**The Normal Force: How to Measure**

The magnitude of the normal force is a measure of how hard two objects push against each other.

The direction is perpendicular to the surface.
Where does the normal force come from?  
From the other body!!!

Does the normal force ALWAYS equal the weight?  

NO!!!
Some comments on strings/cords/cables/ropes

- Can be used to pull from a distance.
- Tension ($T$) at a certain position in a string is the magnitude of the force acting across a cross-section of the string at that position.
  - The force you would feel if you cut the string and grabbed the ends.
  - An action-reaction pair.

More on cords/strings/ropes/cables.

- Consider a horizontal segment of string having mass $m$:
  - Draw a free-body diagram (ignore gravity as string is almost massless)

\[
F_{\text{NET}} = T_2 - T_1 = ma
\]

- So if $m = 0$ (i.e. the string is light) then $T_1 = T_2$