King Saud University
College of Engineering
Electrical Engineering Department

Second Semester 1429/1430 H
EE311 - Basics of Semiconductor Devices

Instructor:
Dr. Abdulhameed Y. Almazroo
Office: Room 2C19, Ph. # 467-8597
http://faculty.ksu.edu.sa/almazroo/default.aspx

Text Book:

Grading Policy: Grades will be distributed as follows;

- Two in-term exams
 - First Exam Thursday 12:30 pm 20/4/1430 H (16/4/2009 G) 20%
 - Second Exam Thursday 12:30 pm 11/6/1430 H (4/6/2009 G) 20%

- Class/Home work 10%
- Drop Quizzes 10%
- Final Exam (covers the entire course content) 40%

Total Grade 100%

A student will not be given a make-up exam unless he presents an official excuse.

Attendance:
A student with an absence rate of 25% or greater by the last day of classes will not be allowed to attend the final exam. Tutorials will be included in the absence rate.

Course Contents:

- Introduction
 - Semiconductors: how different from metals and insulators
 - Intrinsic, N-type, and P-type Semiconductors
 - Generation, Recombination, and Energy band model
 - Conductivity and resistivity
 - Current mechanisms: diffusion and drift currents

- P-N Junction Diodes
 - Physical Operation of Diodes
 - Terminal (I-V) characteristics of Junction Diodes
 - The Ideal Diode and Constant-Voltage Models
 - Diode Applications: Logic gates, Rectifiers, Photodiodes, Solar Cells, LEDs, Zener, and Laser Diodes.
 - Analysis of Diode Circuits
 - The Small-Signal Model and its Application
• Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs)
 - Introduction: MOSFET and the Digital World
 - The Enhancement-Type MOSFET (E-MOSFET): Device Structure and Physical Operation
 - Current-Voltage Characteristics for E-MOSFET
 - The Depletion-Type MOSFET (D-MOSFET): Device Structure and Physical Operation
 - Current-Voltage Characteristics for D-MOSFET
 - MOSFET Circuits at DC
 - The MOSFET as an Amplifier and as a Switch
 - Small-Signal Operation and Models
 - The NMOS and CMOS Digital Logic Inverters

• Bipolar Junction Transistors
 - Physical Structures Modes of Operation, and Types
 - Graphical Representation of Transistor Characteristics
 - Analysis of Transistor Circuits at DC
 - The Transistor as an Amplifier
 - Small-Signal Equivalent Circuit Models
 - Graphical Analysis
 - The Transistor as a Switch