In a p-type semiconductor with donor concentration N_D and acceptor concentration N_A, where $N_A > N_D$.

a. State and explain the charge neutrality equation.

b. State the mass action law and explain what it represents.

c. Solve the above stated two equations to find n and p as functions of n_i, N_D and N_A only (no numbers.)

2. Numerical application: for $N_D = 2 \times 10^{14}$ cm$^{-3}$ and $N_A = 2.75 \times 10^{14}$ cm$^{-3}$.

a. Calculate n and p using the exact solutions found above at $T = 200$ K, 300 K, 400 K, and 600 K.

b. Calculate n and p using the approximate solutions given in the lecture at $T = 200$K, 300K, 400K and 600K.

c. Using MATLAB draw n and p vs T for both cases, exact and approximate, for $T = 200$ K to 600 K.

d. What is your conclusion?

3. Problems: 2-5, 2-7, 2-24 and 2.43