AVL Trees
AVL Trees

- Consider a situation when data elements are inserted in a BST in sorted order: 1, 2, 3, ...
- BST becomes a degenerate tree.
- Search operation FindKey takes O(n), which is as inefficient as in a list.
AVL Trees

- It is possible that after a number of insert and delete operations a binary tree may become imbalanced and increase in height.
- Can we insert and delete elements from BST so that its height is guaranteed to be $O(\log n)$? \(\rightarrow\) Yes, AVL Tree ensures this.
- Named after its two inventors: Adelson–Velski and Landis.
An Imbalanced Tree

A Balanced Tree
AVL Tree: Definition

- Height-balanced tree: A binary tree is a height-balanced-p-tree if for each node in the tree, the difference in height of its two subtrees is at the most p.
- AVL tree is a BST that is height-balanced-1-tree.
AVL Trees: Examples
AVL Trees

Inserting 1, 2, 3, 4 and 5

BST after insertions

AVL Tree after insertions
ADT AVL Tree

Elements: The elements are nodes, each node contains the following data type: Type

Structure: Same as for the BST; in addition the height difference of the two subtrees of any node is at the most one.

Domain: the number of nodes in a AVL is bounded; type AVLTree
ADT AVL Tree

Operations:
1. **Method** FindKey (int tkey, boolean found).
2. **Method** Insert (int k, Type e, boolean inserted).
3. **Method** Remove_Key (int tkey, boolean deleted)
4. **Method** Update(Type e)
ADT AVL Tree

5. Method Traverse (Order ord)
6. Method DeleteSub ()
7. Method Retrieve (Type e)
8. Method Empty (boolean empty).
9. Method Full (boolean full)
public class Type AVLNode // AVL Tree Node {
private:
 int key
 Type data;
 Balance bal; //Balance is enum +1, 0, -1
 AVLNode<Type> *left, *right;
public AVLNode(int, Type); // constructors
};
Step 1: A node is first inserted into the tree as in a BST.

There is always a unique path from the root to the new node called the search path.

Step 2: Nodes in the search path are examined to see if there is a pivot node. Three cases arise.

A pivot node is a node closest to the new node on the search path, whose balance is either −1 or +1.
AVL Tree: Insert

- Case 1: There is no pivot node. No adjustment required.
- Case 2: The pivot node exists and the subtree to which the new node is added has smaller height. No adjustment required.
- Case 3: The pivot node exists and the subtree to which the new node is added has the larger height. Adjustment required.
Insert: Case 1

No Pivot node

Insert 40

Insert 55
Insert: Case 2

New node added to the shorter subtrees of the Pivot.

Pivot Node

Insert 5

Insert 45
Insert: Case 3

A VL Tree is no more an AVL Tree after insertion.
Insert: Case 3

- When after an insertion or a deletion an AVL tree becomes imbalanced, adjustments must be made to the tree to change it back into an AVL tree.
- These adjustments are called rotations.
- Rotations are either single or double rotations.
- For Case 3 there are 4 sub-cases (2 + 2)
Insert: Case 3 (Sub-Case 1)

Remainder of the tree

A

B

Pivot

T3

h

T2

h

T1

New Node

Single Rotation

Remainder of the tree

A

B

T1

T2

T3

New Node
Insert: Case 3 (Sub-Case 2)

Pivot

Single Rotation

New Node
Insert: Case 3 (Sub-Case 3)

One of these is a new node

Double Rotation
Insert: Case 3 (Sub-Case 4)

One of these is a new node
Insertion Example

unbalanced...

...balanced
Step 1: Delete the node as in BSTs. Leaf or node with one child, will always be deleted.

Step 2: For each node on the path from the root to deleted node, check if the node has become imbalanced; if yes perform rotation operations otherwise update balance factors and exit. ➔ Three cases can arise for each node p, in the path.
Step 2 (contd.): **Case 1**: Node p has balance factor 0. No rotation needed.

Case 2: Node p has balance factor of $+1$ or -1 and a node was deleted from the taller sub-trees. No rotation needed.

Case 3: Node p has balance factor of $+1$ or -1 and a node was deleted from the shorter sub-trees. Rotation needed. Eight sub-cases. ($4 + 4$)
Delete: Case 1

Remainder of the tree

Node to be deleted.

Remainder of the tree

h-1

h

0

p

h-1

h

+1

p
Delete: Case 2

Remainder of the tree

p

-1

h

h

Node to be deleted.

Remainder of the tree

p

0

h

h
Delete: Case 3 (Sub–Case 1)

Remainder of the tree

\[\begin{align*}
T_1 & \quad h-1 \\
T_2 & \quad h-1 \\
T_3 & \quad h
\end{align*} \]

Deleted Node

Single Rotation

Remainder of the tree

\[\begin{align*}
C & \quad +1 \\
T_2 & \quad +1 \\
T_1 & \quad \text{Deleted Node}
\end{align*} \]
Delete: Case 3 (Sub-Case 2)

Single Rotation

Remainder of the tree

\[p \]
\[B \]
\[C \]
\[T_1 \]
\[T_2 \]
\[T_3 \]

-1
0
+1

-1
+1

Remainder of the tree

\[C \]
\[B \]
\[T_3 \]
\[T_1 \]
\[T_2 \]
Delete: Case 3 (Sub-Case 3)

Double Rotation

Remainder of the tree

p

B

+1

-1

h-1

T1

A

h-1

-1

C

T2

T3

h-2

Deleted Node

h-1

Remainder of the tree

C

0

B

0

A

+1

h-1

h-1

T1

T2

h-2

T3

T4

h-1
Delete: Case 3 (Sub–Case 4)

Double Rotation

Remainder of the tree

Deleted Node

T1
h-1

C
h-1

A
h-1

B

p

+1

T4

Remainder of the tree

C

-1

B

-1

0

A

h-1

T1

h-1

h-2

T2

h-1

T3

h-1

T4
Delete: Case 3 (Other Sub-Cases)

- Sub-Case 5: mirror image of Sub-Case 1.
- Sub-Case 6: mirror image of Sub-Case 2.
- Sub-Case 7: mirror image of Sub-Case 3.
- Sub-Case 8: mirror image of Sub-Case 4.
Deletion: Example

Delete p
Deletion: Example

Sub-Case 1
Single Rotation

Delete p
Deletion: Example

Sub Case 8
Double Rotation
Deletion: Example

After Double Rotation